MAAP #52: Update – Fires Degrade 11 Protected Areas in northern Peru

Image 52a. Data: MODIS/NASA, SERNANP, NCI.

In the previous MAAP #51, we gave an initial impact assesment regarding the recent wave of fires in protected areas in northern Peru. Here, we provide a more comprehensive update.

Our revised estimate is 6,594 acres (2,668 hectares) burned in 11 Protected Areas (see Image 52a) in late 2016. Note that the image is from November and smoke from the fires is clearly seen.

The majority (4,165 acres) occured in 7 national protected areas under national administration (Cutervo National Park, Pagaibamba Protected Forest, Laquipampa Wildlife Refuge, Tumbes National Reserve, Cerros de Amotape National Park, Tabaconas-Namballe National Sanctuary, Udima Wildlife Refuge).*

The estimates refer to areas directly affected by fires (i.e. burned) and come from two sources: our analysis of satellite images and field information from SERNANP, the Peruvian protected areas agency.

It appears that the primary cause of these fires is poor agricultural burning practices during a time of intense drought. These conditions allowed fires to escape into protected areas.

Below, we show a series of new satellite images of some of the burn areas (for images of other areas, see MAAP #51). We also publish a statement from SERNANP.

 

*The rest occured in 3 national protected areas under private administration (Chicuate-Chinguelas, Huaricancha, and Bosques de Dotor Private Conservation Areas; 1,927 acres) and 1 municipal protected area (ACA Cachiaco-San Pablo; 502 acres).


Cutervo National Park

The following image shows a comparison of the northern sector of Cutervo National Park before (left panel) and after (right panel) the fires. The estimated burn area within the park is 731 acres. The red dots indicate the fire alerts (heat sources) detected by the VIIRS satellite sensor (note the high correlation between the distribution of the alerts and confirmed burn areas).
Image 52b. Data: Planet, VIIRS/NASA, SERNANP. Click to enlarge.

Pagaibamba Protected Forest

The following image shows a comparison of the southern sector of Pagaibamba Protected Forest before (left panel) and after (right panel) the fires. The red dots indicate the fire alerts. SERNANP estimates the burn area within the protected forest at 1,013 acres (see SERNANP statement below).

Image 52c. Data: Planet, Digital Globe (Nextview), VIIRS/NASA, SERNANP. Click to enlarge.

Tumbes National Reserve

The following image shows a comparison of the western sector of Tumbes National Reserve before (left panel) and after (right panel) the fires. It also shows the smaller burn area within Cerros de Amotape National Park. The estimated burn area within the two adjacent protected areas is 1,285 acres. The red dots indicate the fire alerts.

Image 52d. Data: Planet, SERNANP, VIIRS/NASA. Click to enlarge.

Tabaconas-Namballe National Sanctuary

The following image shows a comparison of the western sector of Tabaconas-Namballe National Sanctuary before (left panel) and after (right panel) the fires. The estimated burn area within the national sanctuary is 35 acres. The red dots indicate the fire alerts.

Image 52e. Data: Planet, USGS/NASA, SERNANP, VIIRS/NASA. Click to enlarge.

Dotor Private Conservation Area

The following image shows a comparison of the northern sector of the private conservation area before (left panel) and after (right panel) the fires. The estimated burn area within the national sanctuary is 395 acres. The red dots indicate the fire alerts.

Image 52f. Data: Planet, VIIRS/NASA, SERNANP. Click to enlarge.

 

Statement from SERNANP

Note: This statement refers to the data in MAAP #51. In the current MAAP #52 report we have made the necessary corrections.

In regards to the effect of forest fires in 6 natural protected areas (Refugio de Vida Silvestre Laquipampa, Refugio de Vida Silvestre Bosques Nublados de Udima, Parque Nacional de Cutervo, Parque Nacional Cerros de Amotape, Reserva Nacional de Tumbes y Bosque de Protección Pagaibamba), located in the departments of Lambayeque and Cajamarca, we clarify that although the ACA and ACCA report refers to 1,400 hectares of heat sources in the particular case of the Pagaibamba Protected Forest, it should be noted that according to the verification carried out in-situ by the SERNANP personnel, the burned habitat amounts to only 410 hectares. The remaining 990 hectares were affected, but indirectly, by presence of smoke and ash.

In addition, SERNANP led a multisectoral action along with our park guards who hare specialized in forest fires, as part of immediate attention to the emergency regarding the forest fires in the affected protected areas, obtaining positive results in a short time.

Finally, SERNANP personnel are assessing the ecological damage and developing a recovery plan.

Citation

Novoa S, Finer M (2017) Update – Fires Degrade 11 Protected Areas in northern Peru. MAAP: 52.

MAAP #51: Fires degrade 7 Protected Areas in northern Peru

analisis_focos_2_v1_b_v1_en
Image 51a. Data: VIIRS/INPE, SERNANP.

Peru’s intense 2016 fire season continues, most recently hitting the northern part of the country.

As seen in this map on the left, during November 2016 the highest concentration of fire alerts (as detected by the VIIRS satellite sensor) were concentrated in the headwaters of the northern Amazon basin (departments of Cajamarca, Piura, and Lambayeque).

It appears that the primary cause of these fires is poor agricultural burning practices during a time of intense drought. These conditions allowed fires to escape into protected areas, including 6 national-level protected areas and 1 municipal protected area.

Until additional cloud-free satellite images are available it is difficult to quantify the total burned area. However, by analyzing the currently available imagery, we estimate 1,980 acres burned in 3 of the protected areas (Laquipampa Wildlife Refuge, Chicuate-Chinguelas PCA, and Cachiaco-San Pablo PCA). The Peruvian protected areas agency, SERNANP, estimates an additional 1,000 acres burned in the Pagaibamba Protected Forest. In addition, by analyzing fire alert data, we estimate that an additional 890 acres affected in the other 3 protected areas (Cutervo National Park, Tabaconas Namballe National Sanctuary, and Huaricancha PCA. See below for details.

Moreover, the Peruvian civil society organization SPDA is highlighting that one of the main problems is the lack of fire-related planning by the Peruvian government, which since 2001 has not fulfilled its mandate to create a National System of Fire Prevention and Control.

 

 

 

Protected Natural Areas

Imagen 51b. Datos: MODIS/NASA, SERNANP, NCI. Click para agrandar.
Image 51b. Data: MODIS/NASA. Click to enlarge.

The image to the left shows a zoom of the area of interest with the high concentration of fire alerts, and highlights the 7 protected areas affected by the fires.

Note in the image (from November 21), the smoke columns inside and surrounding the protected areas. Below, we show a series of high resolution satellite images of these fires.

 

 

 

 

 

 

 

 

 

 

National Sanctuary Tabaconas Namballe
Private Conservation Area Chicuate-Chinguela
Private Conservation Area Huaricancha
Environmental Conservation Area Cachiaco

La Imagen 51c. Datos: SERNANP, USGS/NASA
Image 51c. Data: SERNANP, USGS/NASA. Click to enlarge.

These 4 adjacent areas protect highland (paramo and montane forest) ecosystems important for regulating water resources in the Amazon headwaters.

In the image to the left, the dashed yellow lines indicate where the fires were concentrated.

We estimate that approximately 2,125 acres have burned in these 4 areas.

The following images zoom in on the burn areas, showing them both before (left panel) and after (right panel) the fires. Note that in the right panels, the dark areas correspond to the burned areas. Also note that the paramo ecosystem was most affected.

La Imagen 51d. Datos: Planet, USGS/NASA
Image 51d. Data: Planet, USGS/NASA
La Imagen 51e. Datos: SERNANP, Planet, Digital Globe (Nextview). Click para agrandar.
Image 51e. Data: SERNANP, Planet, Digital Globe (Nextview). Click to enlarge.
La Imagen 51f. Datos: SERNANP, Planet, Digital Globe (Nextview). Click para agrandar.
Image 51f. Data: SERNANP, Planet, Digital Globe (Nextview). Click to enlarge.

Laquipampa Wildlife Refuge

La Imagen 51f. Datos: SERNANP, USGS/NASA. Click para agrandar.
Image 51g. Data: SERNANP, USGS/NASA. Click to enlarge.

The Laquipampa Wildlife Refuge is an important protected area that conserves one of the most threatened ecosystems in Peru, the Seasonally Dry Northwest Forests.

In the image to the left, the dashed yellow lines indicate where the fires were concentrated.

We estimate that approximately 250 acres have burned in the refuge.

The following images zoom in on the burn areas, showing them both before (left panel) and after (right panel) the fires. Note that in the right panels, the dark areas correspond to the burned areas.

 

 

 

La Imagen 51h. Datos: SERNANP, Digital Globe (Nextview). Click para agrandar.
Image 51h. Data: SERNANP, Digital Globe (Nextview). Click to enlarge.
La Imagen 51i. Datos: SERNANP, Digital Globe (Nextview). Click para agrandar.
Image 51i. Data: SERNANP, Digital Globe (Nextview). Click to enlarge.

Pagaibamba Protected Forest

La Imagen 51j. Datos: SERNANP, USGS/NASA. Click para agrandar.
Image 51j. Data: SERNANP, USGS/NASA. Click to enlarge.

The Pagaibamba Protected Forest, home to an important ecosystem of paramo and montane forest that helps regulate local water supply, was another important protected area affected by the fires.

The Peruvian protected areas agency, SERNANP, estimates that 1,000 acres burned in the Pagaibamba Protected Forest.

The image to the left shows the extensive smoke columns from 7 fire outbreaks during the peak burning in November.

 

 

 

 

 

 

 

 

 

 

Cutervo National Park

La Imagen 51k. Datos: SERNANP, Airbus. Click para agrandar.
Image 51k. Data: SERNANP, Airbus. Click to enlarge.

Cutervo National Park, created in 1979, was the first protected area established in Peru. It too has also been degraded by the intense season.

The fire alerts indicate that around 494 acres burned within the national park.

The image to the left shows the extensive smoke during the peak burning in November. The yellow circle indicates where the fire alerts were concentrated.

 

 

 

 

 

 

 

 

Citation

Novoa S, Finer M (2016) Fires degrade 6 Protected Areas in northern Peru. MAAP: 51.

 

MAAP #50: Gold Mining Deforests 31,000 Acres in southern Peruvian Amazon during last 4 years

We analyzed hundreds of high-resolution satellite images to calculate the amount of recent (October 2012 – October 2016) gold mining deforestation in the southern Peruvian Amazon: 30,895 acres. Combining this finding with previous studies, we estimate the total gold mining deforestation of around 154,440 acres in the region. Image 50a shows the recent gold mining deforestation in red, and all previous gold mining deforestation in yellow.

Key findings include:

  • The vast majority of the deforestation has occurred in the Madre de Dios region, but also has extended to the adjacent regions of Cusco and Puno.
  • The rate of recent gold mining deforestation was much lower (42%) than during its peak, which occurred between 2010 and 2012 (6,640 vs. 15,650 acres/year).
  • However, half of the recent gold mining deforestation (15,830 acres) occurred within the buffer zones of three protected areas (Tambopata National Reserve, Bahuaja Sonene National Park, and Amarakeari Communal Reserve).
  • Moreover, recent gold mining deforestation invaded two protected areas (Tambopata and Amarakaeri).
Image 50a. Data: MAAP, Asner et al (2013) PNAS, SERNANP. Click to enlarge.
Image 50a. Data: MAAP, Asner et al (2013) PNAS, SERNANP. Click to enlarge.

Previously, Dr. Greg Asner and colleagues documented the deforestation of approximately 123,200 acres (50,000 hectares) by gold mining activities in the southern Peruvian Amazon through September 2012 (Asner et al 2013). We have updated this information by analyzing hundreds of recent (2016) high-resolution satellite images (see Methodology section below). We documented an additional 30,895 acres (12,503 hectares) of gold mining deforestation between October 2012 and October 2016. Thus, combining both studies, we estimate the total gold mining deforestation of around 154,440 acres (62,500 hectares).

Areas of Interest

We have identified at least 7 areas of interest, characterized by high levels of gold mining deforestation between 2013 and 2016 (see Insets A-G in Image 50b). Below, for each of these areas, we briefly describe its situation and show a recent image from 2016 (right panel) in relation to an older image from between 2011 and 2013 (left panel). The yellow circles indicate the primary areas of gold mining deforestation between those dates. Also, we show a high resolution image that represents each area.

Image 50b. Data: MAAP, Asner et al (2013) PNAS, SERNANP
Image 50b. Data: MAAP, Asner et al (2013) PNAS, SERNANP

A. Tambopata National Reserve and Buffer Zone (La Pampa sector)

Image 50c. Data: USGS/NASA, SERNANP. Click to enlarge.
Image 50c. Data: USGS/NASA, SERNANP. Click to enlarge.

This area is the most serious in terms of the advance of deforestation in a protected area. As documented in MAAP #46, after the initial invasion in November 2015, illegal mining within the Tambopata National Reserve has now exceeded 450 hectares. Recently, the Peruvian Government has carried out a series of major raids against the illegal miners in this area (see MINAM 2016).

Image 50d. Data: Digital Globe (Nextview), SERNANP. Click to enlarge.
Image 50d. Data: Digital Globe (Nextview), SERNANP. Click to enlarge.

In regards to the buffer zone, there has been a sharp increase in the deforestation in the area known as La Pampa. In total, we estimate 9,720 acres of gold mining deforestation within the buffer zone of Tambopata National Reserve over the past four years.

Image 50e. Data: Digital Globe (Nextview), SERNANP. Click to enlarge.
Image 50e. Data: Digital Globe (Nextview), SERNANP. Click to enlarge.

B. Upper Malinowski River (Bahuaja Sonene National Park buffer zone)

Image 50f. Data: USGS/NASA, SERNANP. Click to enlarge.
Image 50f. Data: USGS/NASA, SERNANP. Click to enlarge.

Upstream of the Tambopata National Reserve, illegal gold mining is also advancing along the upper Malinowski River. This area is located in the buffer zone of Bahuaja Sonene National Park. We estimate 2,256 acres of gold mining deforestation has occurred within this buffer zone over the past four years.

Image 50g. Data: Digital Globe (Nextview), SERNANP. Click to enlarge.
Image 50g. Data: Digital Globe (Nextview), SERNANP. Click to enlarge.

C. Delta-1/Amarakaeri Communal Reserve

Image 50h. Data: USGS/NASA, SERNANP. Click to enlarge.
Image 50h. Data: USGS/NASA, SERNANP. Click to enlarge.

An area known as Delta-1 has also experienced a recent increase in gold mining deforestation. This area is partially located within the buffer zone of the Amarakaeri Communal Reserve. As we reported in MAAP #6, illegal gold mining entered the Reserve between 2014 and 2015. The joint patrol and monitoring actions between the national government and indigneous representatives of the Reserve (ECA Amarakaeri) managed to stop the advance of mining deforestation within the Reserve in 2016 (MAAP #44). However, gold mining deforestation continues in the buffer zone of the Reserve, clearing 3,857 acres over the past four years.

Image 50i. Data: Digital Globe (Nextview), SERNANP. Click to enlarge.
Image 50i. Data: Digital Globe (Nextview), SERNANP. Click to enlarge.

D. Cusco: Camanti/Quince Mil

Image 50j. Data: USGS/NASA, SERNANP. Click to enlarge.
Image 50j. Data: USGS/NASA, SERNANP. Click to enlarge.

The advance of gold mining is not limited to Madre de Dios, as it has also expanded in the Cusco region. Most mining activity in Cusco occurs along the Araza and Nuciniscato Rivers in an area known as Camanti/Quince Mil (located between the southeastern sector of the Amarakaeri Communal Reserve and the Interoceanic Highway). We estimate that gold mining deforestation in Cusco reached 1,006 acres over the past four years.

Image 50k. Data: Digital Globe (Nextview), SERNANP. Click to enlarge.
Image 50k. Data: Digital Globe (Nextview), SERNANP. Click to enlarge.

E. Madre de Dios River (i)

Gold mining deforestation also continues to advance along the Madre de Dios River, between the city of Puerto Maldonado and the area of Boca Colorado. Mining in this area is characterized by many small and scattered mining operations.

Image 50l. Data: USGS/NASA, MINAGRI. Click to enlarge.
Image 50l. Data: USGS/NASA, MINAGRI. Click to enlarge.
Image 50m. Data: Digital Globe (Nextview), MINAGRI. Click to enlarge.
Image 50m. Data: Digital Globe (Nextview), MINAGRI. Click to enlarge.

F. Madre de Dios River (ii)

Image 50m. Data: USGS/NASA. Click to enlarge.
Image 50m. Data: USGS/NASA. Click to enlarge.
Image 50n. Data: USGS/NASA. Click to enlarge.
Image 50n. Data: USGS/NASA. Click to enlarge.

G. Pariamanu River

Image 50o. Data: USGS/NASA. Click to enlarge.
Image 50o. Data: USGS/NASA. Click to enlarge.

Finally, we documented the start of mining in a new area: along the Pariamanu river. We estimate that, so far, gold mining deforestation along this river has reached 170 acres.

Image 50p. Data: Digital Globe (Nextview). Click to enlarge.
Image 50p. Data: Digital Globe (Nextview). Click to enlarge.

Methodology

We used gold mining deforestation data from Asner et al 2013 as a pre-2013 base. We then added 2013-2014 forest loss data (Hansen et al 2013) and 2015-2016 GLAD alerts (Hansen et al 2016), both datasets generated by the University of Maryland and Google. The 2013-2016 data was filtered to only include forest loss directly caused by gold mining as determined by visual analysis of 2016 high-resolution satellite imagery. This included 0.5 m resolution imagery from Digital Globe and 3-5 m resolution imagery from Planet. In total, we analyzed 135 images from Digital Globe and 34 from Planet. Gold mining deforestation is suitable for this type of visual analysis because it leaves a unique footprint, quite distinct from other possible causes such as agriculture, cattle pasture, and natural river movement. As described in Asner et al 2013, “gold mining operations result in a unique combination of bare substrate and standing water[…]” Finally, we erased any overlapping mining deforestation data to avoid duplicating information between data sets. Displayed Landsat images are bands 753, made transparent over bands 432.

References

Asner GP, Llactayo W, Tupayachi R,  Ráez Luna E (2013) Elevated rates of gold mining in the Amazon revealed through high-resolution monitoring. PNAS 46: 18454. They reported 46,417 hectares confirmed and 3,268 hectares suspected (49,865 ha total).

Hansen MC et al (2013) High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 342: 850–53.

Hansen MC et al (2016) Humid tropical forest disturbance alerts using Landsat data. Environ Res Lett 11: 034008.

Citation

Finer M, Olexy T, Novoa S (2016) Gold Mining Deforests 32,000 Acres in southern Peruvian Amazon from 2013 to 2016. MAAP: 50.

MAAP #33: Illegal Gold Mining Alters Course of Malinowski River (border of Tambopata National Reserve)

In MAAP #30, we described the illegal gold mining invasion of Tambopata National Reserve, an important protected area in the southern Peruvian Amazon (department of Madre de Dios). Here in MAAP #33, we show that illegal gold mining is also altering the course of the Malinowski River, which forms the natural boundary of the Reserve. Image 33a shows the two areas where we have documented a total artificial deviation (cutting) of 4.4 km (2.7 miles) of the river (see details below).

Image 33a. Data: Planet Labs, SERNANP
Image 33a. Data: Planet Labs, SERNANP

Zoom A: A Recent Deviation of the Malinowski River

Image 33b shows the final stage of the deviation of the Malinowski River between March 31 (left panel) and May 3 (right panel) of this year in the area indicated by Inset A in Image 33a. The new flow of the river is clearly seen in the right panel, cutting a 1.7 km stretch of the previous course.

Image 33b. Data: Planet Labs, Digital Globe (Nextview)
Image 33b. Data: Planet Labs, Digital Globe (Nextview)

Image 33c shows with greater precision how the Malinowski river was diverted in this area between April and May 2016. The red arrow indicates the exact same place across time in the three images.

Image 33c. Data: Digital Globe (Nextview)
Image 33c. Data: Digital Globe (Nextview)

Zoom B: An Earlier Deviation of the Malinowski River

In February 2016, Peruvian specialists presented how mining activity had recently changed the natural course of the Malinowski river in the area indicated in Inset B*. Image 33d shows the progressive change: from the increase in mining activity along the normal course of the river in June 2013 (left panel), to the new stretch of riverbed in June 2015 (center panel), and finally to the expansion of mining activity along the previous course (right panel). The red dot indicates the same place over time in the three images. A total of 2.7 km was cut from the previous river course.

Image 33d. Data: Digital Globe (Nextview), Planet Labs
Image 33d. Data: Digital Globe (Nextview), Planet Labs

Ecological Impacts

According to Dr. Carlos Cañas**, coordinator of the Amazon Waters Initiative for Wildlife Conservation Society in Peru, the deviation of the natural course of the Malinowski River will have significant ecological impacts, including:

  • Although the Malinowski River’s course has natural movement, the changes documented in MAAP #33 definitely represent an artificial alteration caused by mining activity.
  • These artificial changes are altering the course of the Malinowski from one that is “narrow and defined” to one that is “wide and scattered.” This change impacts the river’s flood patterns by changing the intensity, timing, and frequency of flooding along the river’s banks. This implies an effect on the migratory behavior of many species of fish downstream, which receive and interpret signals from the river to guide vital functions like feeding and reproduction.
  • The river’s new wider course also causes the velocity of water downstream to decrease, which will lead to increased levels of sediment in the discharge zone of the largest tributary, the Tambopata. Given the nature of the Tambopata, this could provide the almost-permanent damming of the Malinowski, as greater volume of the Tambopata means more sedimentation at the mouth of the river. Among other things, this could hinder the entry of fish to their feeding zones.
  • As seen in Image 33d, fish access to certain areas will be interrupted by the blockade and closure of channels. Also, the connection between the floodable forest and the river channel is completely altered, if not interrupted, in this section of the river. Many fish species that eat fruit or vegetation from the adjacent forest depend on this seasonal connection for food.
  • The Malinowski River, since it is a tributary of the Tambopata River, has natural áreas that are crucial to the reproduction of many local species. Its tributary streams represent habitats that differ from the main river and harbor an incredible variety of fish and invertebrates that contribute to the biodiversity of the river basin. These streams have little sediment, and are thus highly transparent. Mining will destroy or drastically alter these environments, severely impacting this biodiversity.

Referencias

*Villa L., Campos L. G., Pino I. M. (01 de febrero de 2016). Primer Sistema de Alerta Temprana de Geoinformación (SAT-GI) para Áreas Naturales Protegidas del Perú: Reserva Nacional Tambopata y el Ámbito de Madre de Dios del Parque Nacional Bahuaja Sonene. Reporte Nº 001-2016.

** Cañas CM, Waylen PR (2011) Modelling production of migratory catfish larvae (Pimelodidae) on the basis of regional hydroclimatology features of the Madre de Dios Basin in southeastern Peru. Hydrol. Process. DOI: 10.1002/hyp.8192.

**Cañas CM, Pine WE (2011) DOCUMENTATION OF THE TEMPORAL AND SPATIAL PATTERNS OF PIMELODIDAE CATFISH SPAWNING AND LARVAE DISPERSION IN THE MADRE DE DIOS RIVER
(PERU): INSIGHTS FOR CONSERVATION IN THE ANDEAN-AMAZON HEADWATERS. River Res. Applic. 27: 602–611.

Citation

Finer M, Novoa S (2016)  Illegal Gold Mining Alters the Course of the Malinowski River (border of Tambopata National Reserve). MAAP: 33.

MAAP #29: Construction of New Road between Manu National Park and Amarakaeri Communal Reserve (Madre de Dios)

Here in MAAP #29, we describe the Nuevo Eden-Boca Manu-Boca Colorado road project in the southern Peruvian Amazon (Madre de Dios region). The objective of this article is to show the current state of construction and quantify the direct and indirect deforestation caused thus far by the road. This is a controversial road project because it cuts through the buffer zones of two important protected areas, the Amarakaeri Communal Reserve and Manu National Park*.

MAAP_Manu_a_m_v1_en
Image 29a. Data: SERNANP, USGS, MINAGRI, IBC, CLASlite, PNCB/MINAM, Hansen/UMD/Google/USGS/NASA, SPOT

Image 29a shows the general context of the area between Amarakaeri  and Manu where the road is being constructed. The yellow line indicates the section of road built in 2015 (11.6 km) between the towns of New Eden and Shipetiari (see right panel for high-resolution image of this construction). The red line indicates the new section under construction thus far in 2016 (21.8 km). Thus, in total, we have documented the construction of 33.4 km of road within the Amarakaeri Communal Reserve buffer zone. Finally, the pink line indicates the future road section planned to Boca Manu and then to Boca Colorado.

Road Construction in 2015

Image 29b shows a series of satellite images (Landsat) that illustrate the rapid road construction during 2015. The first two panels show the construction of 11.6 km between February (left panel) and October (central panel) 2015. The yellow arrows in the central panel indicate the direct deforestation (20 hectares) associated with construction of the route. The yellow circles in the right panel indicate the indirect (secondary) deforestation associated with the road (12 hectares). Thus, in total, we have documented the deforestation of 32 hectares (or 79 acres) associated with the road as of mid-March 2016.

MAAP_Manu_c_m_v1_en
Image 29b. Data: NASA/USGS.

New Road Construction in 2016

Image 29c shows the continued road construction (2.9 km) between January and mid-March 2016 (see orange arrows in the left panel). Moreover, using high-resolution imagery provided by Planet Labs, the right panel shows a new path (see red arrows) that is likely the leading edge of the current road construction. This path now extends an additional 19 km in the direction of Boca Manu (see Image 29d).

MAAP_Manu_e_m_v1_en
Image 29c. Data: NASA/USGS, Planet Labs
Imagen Xd. Datos: USGS
Image 29d. Data: NASA/USGS

References

*MINAM (2016) MINAM está en contra de predictamen que permitiría la construcción de la carretera en zona de amortiguamiento del Manu y de Amarakaeri. http://www.minam.gob.pe/perucrecimiento/2016/02/29/minam-esta-en-contra-de-predictamen-que-permitiria-la-construccion-de-la-carretera-en-zona-de-amortiguamiento-del-manu-y-de-amarakaeri/

MINAM (2015) MINAM y SERNANP manifiestan preocupación por aprobación de ley que declara de interés nacional carretera en zona de amortiguamiento del Manu y Amarakaeri. http://www.minam.gob.pe/notas-de-prensa/minam-y-sernanp-manifiestan-preocupacion-por-aprobacion-de-ley-que-declara-de-interes-nacional-carretera-en-zona-de-amortiguamiento-del-manu-y-amarakaeri/

Citation

Finer M, Novoa S, Olexy T (2016) Construction of a New Highway between Manu National Park and Amarakaeri Communal Reserve (Madre de Dios), 2016. MAAP: 29.

MAAP #24: Illegal Gold Mining Penetrates Deeper into Tambopata National Reserve

*NoteDuring the preparation of this analysis, the Peruvian government conducted an operation against the illegal gold mining activity in the area described below (see this news article in Spanish for more information).

In MAAP #21, we revealed, using high-resolution images, the first sign of an invasion into the Tambopata National Reserve (an important natural protected area in the southern Peruvian Amazon) by illegal gold mining activities. Here in MAAP #24, we show two additional types of satellites imagery (due to lack of new high-resolution image) indicating that the illegal gold mining deforestation continues to penetrate deeper into the Reserve.

Image 24a. Landsat images showing the expansion of deforestation inside the Tambopata National Reserve between December 2015 (left panel) and January 2016 (right panel). Data: USGS, SERNANP.

Image 24a shows a comparison between two Landsat images (30 m resolution) indicating that the deforestation continued to increase within the Reserve between December 2015 (left panel) and January 2016 (right panel). The red circles indicate the general location of the newly deforested areas, which appear pink (soil without forest cover) and blue (wastewater pools) in contrast to the green (standing forest). The deforestation inside the Tambopata National Reserve between December 2015 and January 2016 is approximately 20 hectares (49 acres).

Image 24b is the base map showing the area described above in a larger context. The red inset box indicates the area shown in Image 24a.

Image 24b. Reference Map of mining area. Data: SERNANP, WorldView-2 of Digital Globe (NextView).

Radar: Powerful New Tool

Image 24c. Radar images showing the expansion of deforestation inside the Tambopata National Reserve between November 2015 (left panel) and January 2016 (right panel) Data: SERNANP, Sentinel-1
Image 24c. Radar images showing the expansion of deforestation inside the Tambopata National Reserve between November 2015 (left panel) and January 2016 (right panel) Data: SERNANP, Sentinel-1

Image 24c shows, for the first time in MAAP, information from a radar satellite (Sentinel-1 from the European Space Agency). Unlike multi-spectral Landsat imagery that is vulnerable to clouds blocking the view, radar imagery is useful year-round (even the Amazon rainy season) because it can penetrate through cloud cover. In the displayed images, the shades of gray are related to the topography and the height of the forest. Lower areas, such as recently deforested lands and bodies of water, appear darker (almost black) in color, while higher areas such as standing forests appear lighter in color. Image 24c confirms the increase in deforestation between November 2015 (left panel) and January 2016 (right panel) within the area indicated above (see the red boxes).

Citation

Finer M, Novoa S, Olexy T (2016) Illegal Gold Mining Penetrates Deeper into Tambopata National Reserve. MAAP: 24.

MAAP #22: Yaguas – Another Big Conservation Opportunity for Peru

Peru recently celebrated a major conservation victory for 2015 with the creation of Sierra del Divisor National Park. Prior to this announcement, Sierra del Divisor was classified as a Reserved Zone, which is a temporary measure to protect an area of biological importance until the government is able to determine a final designation. In these cases, national park status represents the strongest possible final designation.

Now in 2016, there is the opportunity for another major conservation victory in Peru: creation of Yaguas National Park. Yaguas received Reserved Zone status in 2011 and is now awaiting its final designation. Yaguas Reserved Zone is both big (868,928 hectares or 2,147,168 acres) and remote, located in extreme northeast Peru within the department of Loreto (see Image 22a).

1. MAAP_Yaguas_2x_a_v4
Image 22a. Yaguas Reserved Zone. Data: USGS, SERNANP, PNCB/MINAM, Hansen/UMD/Google/USGS/NASA

Note that Yaguas is a critical part of a series of protected areas that provide landscape level biological connectivity in northeast Peru. In addition, Yaguas borders and complements a large protected Colombian landscape, forming one of the largest assemblies of protected areas and indigenous lands in the Amazon.

Deforestation Analysis

Yaguas Reserved Zone is the rare example of an area in extremely good conservation condition. As seen In Image 22b, we detected virtually no deforestation within or surrounding the reserve. Note that the background in Image 22b is a Landsat image (30 m resolution) from December 2015 showing the reserve is completely covered with intact forest.

2. MAAP_Yaguas_a_v2_es
Image 22b. Yaguas Deforestation analysis. Data: USGS, PNCB/MINAM, Hansen/UMD/Google/USGS/NASA, MINAGRI, SERNANP

Carbon Analysis

Dr. Greg Asner (Carnegie Institution for Science) and the Peruvian Ministry of the Environment recently produced a high-resolution carbon map of Peru (Asner et al. 2014 a,b). As seen in Image 22c, much of the reserve contains very high carbon levels. Using this data, we calculated that Yaguas Reserved Zone contains approximately 102 million metric tons of above-ground carbon, one of the highest totals for a protected area in all of Peru.

3. MAAP_Yaguas_carbono
Image 22c. High-resolution carbon geography of the Yaguas Reserved Zone. Data: Asner et al. 2014 a,b.

Asner GP, Knapp DE, Martin RE, Tupayachi R, Anderson CB, et al. (2014 a) Targeted carbon conservation at national scales with high-resolution monitoring. Proceedings of the National Academy of Sciences111(47), E5016-E5022.

Asner GP, Knapp DE, Martin RE, Tupayachi R, Anderson CB, et al. (2014 b) The high-resolution carbon geography of Peru. Berkeley, CA: Minuteman Press.

Biodiversity

The Yaguas Reserved Zone also contains extremely high levels of biodiversity, particularly for fish. In fact, according to a rapid biological inventory by the Field Museum in 2010, Yaguas may be home to the highest fish diversity in Peru. During the inventory, scientists recorded 337 fish species in three weeks, far more than any other rapid inventory in Peru (see Image 22d). Biologists estimate that Yaguas is home to around 550 fish species, making it one of South America’s most diverse aquatic ecosystems.

The Reserved Zone (and proposed national park) was specifically designed to protect this extraordinary aquatic diversity. It contains a complete gradient of lowland river aquatic habitats, from headwaters (first order and intermediate) and springs to lowland areas encompasing habitats such as floodplains, lakes, swamps, bogs, and a meandering main river (see Images 22e and 22f). Importantly, unlike most of the major rivers protected by Peruvian national parks, the Yaguas River is born in the Amazon lowlands, not in the Andes. Thus, it contains hydrological processes and riparian habitats that are not yet strictly protected by the Peruvian system of protected areas.

Image Xd. Number of fish species recorded in rapid inventories of the Yaguas Reserved Zone and 10 other sites in Loreto, Peru. Data: http://fm2.fieldmuseum.org/rbi/results.asp
Image 22d. Number of fish species recorded in rapid inventories of the Yaguas Reserved Zone and 10 other sites in Loreto, Peru. Data: http://fm2.fieldmuseum.org/rbi/results.asp

 

Image Xe. Aerial view of Yaguas River. Photo Credit: Alvaro del Campo (Field Museum)
Image 22e. Aerial view of Yaguas River. Photo Credit: Alvaro del Campo (Field Museum)
Quebrada_Cachimbo_1_ADC
Image 22f. Aerial view of Yaguas River and the Cachimbo tributary. Photo Credit: Alvaro del Campo (Field Museum)

References:

Hidalgo, M. H., y A. Ortega-Lara. 2011. Peces. Pp. 98–108 y 308–329 en N. Pitman, C. Vriesendorp, D. K. Moskovits, R. von May, D. Alvira, T. Wachter, D. F. Stotz y Á. del Campo, eds. Perú: Yaguas-Cotuhé. Rapid Biological and Social Inventories Report 23. The Field Museum, Chicago. http://fm2.fieldmuseum.org/rbi/results_23.asp

Pitman, N., C. Vriesendorp, D. K. Moskovits, R. von May, D. Alvira, T. Wachter, D. F. Stotz y Á. del Campo, eds. 2011. Perú: Yaguas-Cotuhé. Rapid Biological and Social Inventories Report 23. The Field Museum, Chicago. http://fm2.fieldmuseum.org/rbi/results_23.asp

Acknowledgments

We thank the Field Museum and Instituto del Bien Común for helpful comments and information.

Citation

Finer M, Novoa S (2015) Another Big Conservation Opportunity for Peru: Yaguas.

 

MAAP #21: Illegal Gold Mining Deforestation Enters Tambopata National Reserve (Madre de Dios, Peru) [High-Resolution View]

*Note: During the review process for this article, a major operation against illegal mining activities was carried out by the Peruvian government in the area described below.

Image 21a illustrates a recent illegal gold mining invasion of the Tambopata National Reserve. Tambopata is an important protected area in the southern Peruvian Amazon (department of Madre de Dios). Image 21a compares two high-resolution (0.5 m) images taken two months apart over the same area along the northern border of the reserve. One can clearly see the beginning of the illegal gold mining activity and deforestation within the reserve between September (left panel) and November (right panel) 2015. For more context regarding the area in question, see the yellow box in Image 21b.

Image 20a. Recent invasion of Tambopata National Reserve. Data: SERNANP, WorldView-2 and WorldView-3 of Digital Globe (NextView).
Image 21a. Recent invasion of Tambopata National Reserve. Data: SERNANP, WorldView-2 and WorldView-3 of Digital Globe (NextView).

Reference Map

Image 21b is a reference map showing the above detailed area in the larger context between the northern border of the Tambopata National Reserve and the illegal gold mining zone known as La Pampa. The yellow box corresponds to the area detailed in Image 21a. Note that the original boundary of the reserve created in 2000 no longer coincides with the route of the Malinowski River due to its natural movement over time.

Image 20b. Reference Map. Data: SERNANP, WorldView-2 of Digital Globe (NextView).
Image 21b. Reference Map. Data: SERNANP, WorldView-2 of Digital Globe (NextView).

Deforestation Data

Image 21c presents an updated analysis of the deforestation in the area between La Pampa and the Tambopata National Reserve. In this specific area, we documented the deforestation of 2,518 hectares (6,222 acres) between 2013 and 2015, the vast majority of which is clearly linked to illegal gold mining activities. The majority of this recent deforestation has occurred in La Pampa, a bit north of the reserve (but within its buffer zone). However, recent deforestation has also occurred along the Malinowski river, which forms the northern boundary of the reserve in this area.

Imagen 3. Análisis de deforestacion. Fuentes: SERNANP, USGS, WorldView-2 de Digital Globe (NextView).
Image 21c. Analysis of deforestation. Data: CLASlite, Hansen/UMD/Google/USGS/NASA, SERNANP, USGS, WorldView-2 of Digital Globe (NextView).

In Image 21c, the data from 2000-2014 came from Hansen/UMD/Google/USGS/NASA, while the data from 2015 came from our own analysis using CLASlite.

Citation

Finer M, Novoa S, Snelgrove C, Peña N (2015) Confirming an Illegal Gold Mining Invasion of the Tambopata National Reserve (Madre de Dios, Peru) [High-Resolution View]. MAAP #21.

Image #15: Sierra del Divisor – New logging road threatens northern section of proposed national park

In MAAP #7, we emphasized the need to promote the Sierra del Divisor Reserved Zone to the category of National Park due to the growing threats within and around the area. Here in MAAP #15, we show how the construction of a new logging road threatens the northwest section of the current Reserved Zone. New high-resolution images reveal that the construction of this logging road has continued to expand in 2015, and now even crosses a corner of the Reserve.

In addition, in anticipation of the upcoming visit of Peruvian President Ollanta Humala to the United Nations in New York to discuss climate change, we present data on the levels of carbon stored in the proposed Sierra del Divisor National Park.

Image 15a. Landsat (30 m res) images of the new logging road crossing the Sierra del Divisor Reserved Zone. Data: USGS, SERNANP

Image 15a shows the most recent expansion of the logging road between June (left panel) and September (right panel) 2015. For more context, note that the area displayed in Image 15a corresponds to the dashed box marked with the letter “A” in Image 15c.

Image 15b displays a high-resolution (1.5 m) image from August 7 of the section of road crossing the northern section of the Sierra del Divisor Reserved Zone.

Image 15b. High-resolution image of logging road crossing northern tip of Reserved Zone. Data: SPOT 7 Airbus.

Expansion 2012 – 2015

In Figure 15c, we show the expansion of this logging road from 2012 to 2015, totaling approximately 75 km of new road construction during these three years.

Image 15c. Expansion of the logging road in the northeast sector of the Reserve Zone. Data: MINAM-PNCB/MINAGRI-SERFOR, SERNANP, USGS.
Image 15c. Expansion of the logging road in the northeast sector of the Reserve Zone. Data: MINAM-PNCB/MINAGRI-SERFOR, SERNANP, USGS.

Carbon Data

Sierra_divisor_carbom_asner1_e
Imagen 15d. High-resolution carbon geography of Sierra del Divisor area. Data: Asner et al. 2014 a,b.

 

Dr. Greg Asner (from the Carnegie Institution for Science) and colleagues recently produced a high-resolution carbon map of Peru (Asner et al. 2014 a,b).

According to this data, the Sierra del Divisor Reserved Zone has the second largest carbon stock among all Peruvian protected areas (behind only Alto Purus National Park).

As seen in Image 15d, much of the proposed national park area contains high to very high carbon levels. Using this data, we calculated that the proposed Sierra del Divisor National Park contains approximately 165 million metric tons of above-ground carbon.

 

 

 

 

 

 

 

 

 

 

 

 

SERNANP Response

In response to this article, SERNANP (the Peruvian protected areas agency) issued this statement:

The deforestation alert in the northwest sector parallel to the Sierra del Divisor Reserved Zone is caused by the improvement of an alleged older road that runs along the natural protected area, which is being operateded by a neighboring forest concessionaire. We denounced this before the Special Prosecutor for Environmental Matters in Loreto in 2012, as we considered it irregular and a threat to the protected area.

[La deforestación que se advierte en el sector noroeste paralelo a la Zona Reservada Sierra del Divisor se origina por el mejoramiento de una supuesta carretera antigua que viene ejecutando un concesionario forestal colindante con el área natural protegida, la cual denunciamos ante la Fiscalía Especializada de Materia Ambiental – Loreto en el año 2012, por considerarla irregular y constituirse en una amenaza a este espacio protegido.]

This past August, the Special Prosecutor scheduled an inspection, which was conducted jointly with the Public Prosecutor of the Ministry of the Environment. We have been making every effort to ensure that the Special Prosecutor performs the corresponding actions according to law, such as requiring OSINFOR to supervise the forest concessionaire due to the irregular events that we denounced.

[Recién en agosto último la Fiscalía programó la inspección fiscal, que se realizó conjuntamente con la Procuraduría Pública del Ministerio del Ambiente, en la cual venimos realizando todos los esfuerzos para que la Fiscalía Especializada realice las actuaciones que corresponde de acuerdo a Ley, así como requerir al OSINFOR supervise al concesionario forestal, por los hechos irregulares que denunciamos.]

Lima, 17 de setiembre del 2015

References

Asner GP, Knapp DE, Martin RE, Tupayachi R, Anderson CB, et al. (2014 a) Targeted carbon conservation at national scales with high-resolution monitoring. Proceedings of the National Academy of Sciences, 111(47), E5016-E5022.

Asner GP, Knapp DE, Martin RE, Tupayachi R, Anderson CB, et al. (2014 b) The high-resolution carbon geography of Peru. Berkeley, CA: Minuteman Press.

Citation

Finer M, Novoa S (2015) Sierra del Divisor – New logging road crosses northern section of Reserve Zone MAAP: Image #15. Link: https://www.maapprogram.org/2015/09/image15-sierra-divisor/

Image #11: Importance of Protected Areas in the Peruvian Amazon

The Peruvian national protected areas system, known as SINANPE, is critically important to Amazon conservation efforts in the country.

There are currently 46 protected areas in the Peruvian Amazon under national or regional administration*. In total, these areas cover 19.5 million hectares and include a wide variety of designations, including areas of indirect use (those with strict protection, such as National Parks) and direct use (those that allow the exploitation of natural resources, such as National Reserves) under national administration and Regional Conservation Areas  under regional administration.

Here, MAAP #11 presents a deforestation analysis that demonstrates the effectiveness of protected areas in relation to the surrounding landscape in the Peruvian Amazon.

MAAP_All_ANP_11a_v4_e
Image 11a. Recent forest loss in relation to protected areas in the Peruvian Amazon. Data: SERNANP, PNCB-MINAM/SERFOR-MINAGRI, NatureServe.

Key Results

Image 11a shows recent (2000 – 2013) forest loss patterns in relation to the current national protected area system in the Peruvian Amazon (Image 11b shows the same, but with zooms of the northern, central, and southern regions, respectively).  Note that some of the documented forest loss surely comes from natural causes, such as landslides or meandering rivers.

Across all protected areas administered nationally (such as National Parks and National Reserves), we found that deforestation was significantly lower starting at 2 km within their boundaries compared to outside them (see Images 11b and 11c).

The rate of deforestation outside of protected areas is more than twice of that within them (within the 5 km buffer zone study area, see below).

MAAP_All_ANP_11b_v2_z_m
Image 11b. Regional zooms (north, central, south) of recent forest loss in relation to protected areas. Data: SERNANP, PNCB-MINAM/SERFOR-MINAGRI, NatureServe.

Deforestation Analysis – Methods

We conducted a basic analysis of all protected areas administered nationally (National Park, National Sanctuary, Historic Sanctuary, National Reserve, Protection Forest, Communal Reserve, and Reserved Zone) to estimate their relative effectiveness in controlling deforestation in relation to the surrounding landscape. The forest loss data comes from the National Program of Forest Conservation for the Mitigation of Climate Change (PNCB) of the Ministry of the Environment of Peru. This deforestation analysis had two key components.

MAAP_All_ANP_11b_v3_
Image 11c. Illustration of spatial intervals for deforestation analysis.

First, we compared recent forest loss within versus outside each protected area at four different spatial intervals: 1 km, 2 km, 3 km, and 5 km (see Image 11c). In other words, starting at the boundary line for each area, we created a 1 km buffer both inside and outside the area and compared the relative (forest loss/area *100) deforestation. We then repeated this analysis for the other intervals. The establishment of these intervals areas is based on the assumption that the closer to the limits of each protected area, deforestation could be more related to anthropogenic activities in surrounding areas, which is expected to reduce the effect of natural losses due to changes in the courses of rivers and landslides in unstable areas.

Second, we controlled for protected area creation date. If an area was created prior to 2000, such as Manu National Park created in 1973, we used the complete 2000-2013 PNCB forest loss dataset. If an area was created after 2000, such as Alto Purus National Park created in 2004, we used just the forest loss dataset for the years following its creation (in this case, 2005-2013).

This analysis was designed to show general patterns, not be a definitive evaluation of the effectiveness of protected areas. A more complete evaluation could control for additional variables (such as slope, elevation, climate, distance to population centers, etc…).

 

 

 

 

 

 

Deforestation Analysis – Results

MAAP_All_ANP_11c_v3_m
Image 11d. Results of deforestation analysis.

Across all protected areas administered nationally, we found that deforestation was significantly lower starting at 2 km within their boundaries compared to outside them (p < 0.05) (see Image 11d). The significance level increased by an order of magnitude between 3 and 5 km. We didn’t detect a significant difference between 1 km within and outside the protected area boundaries.

On average, we found that 0.5% of the area within protected areas experienced forest loss between 2000-2013, while outside the protected areas was nearly 1.2%. In other words, the rate of deforestation outside of protected areas is more than twice of that within them. Furthermore, as mentionned earlier, some forest loss within the protected areas surely comes from natural causes, such as landslides or meandering rivers.

Related Studies

As noted above, this analysis was designed to show general patterns, not be a definitive evaluation of the effectiveness of protected areas. Several other recent studies have pointed out the importance of controlling for additional variables.

In a study focused on the Brazilian Amazon, Pfaff et al (PLOS ONE 2015) found that is important to control for the location of protected areas, which is often in more isolated areas with lower deforestation pressures.

Specifically regarding the Peruvian Amazon, a study by the research organization Resources for the Future (2014) found that “the average protected area reduces forest cover change”. This study rigorously controlled for a number of key variables (such as elevation, slope, climate, and distance to cities), but used older and more limited forest loss and protected areas data.

*This total of 46 protected areas includes: a) all the categories considered part of SINANPE (including Reserved Zones and Regional Conservation Areas) except for Private Conservation Areas, and b) all areas that are totally or partially located in the Amazon basin.

SERNANP Response

In response to this article, SERNANP (the Peruvian protected areas agency) issued this statement:

Actualmente el SERNANP viene realizando una verificación en campo por parte del personal guardaparque de las Áreas Naturales Protegidas durante sus acciones de patrullaje merced a la información de pérdida de bosque proporcionada por el Ministerio del Ambiente, periodo 2013-2014, a fin de determinar si el cambio de la cobertura se debe a causas naturales o antrópicas. Esto podrá complementar el análisis desarrollado por ACCA.

Es importante señalar, que el SERNANP viene aplicando el enfoque ecosistémico en la planificación y gestión de las Áreas Naturales Protegidas, en este sentido desarrolla acciones que permiten evitar la deforestación al interior de estos espacios protegidos, pero a su vez nos proponemos que en su entorno se desarrollen actividades compatibles con la conservación que eviten el fraccionamiento del hábitat y permitan la sostenibilidad de la conservación de las Áreas Naturales Protegidas a futuro.

En este sentido, considerando de vital importancia generar alianzas con las entidades que toman decisiones en el territorio fuera de estos espacios, hemos establecido a nivel nacional un trabajo conjunto con los Gobiernos Regionales a fin de integrar las Áreas Naturales Protegidas dentro de corredores de conservación con otras modalidades de conservación que  se impulsan a través de sus sistemas regionales de conservación. Con ello, se esperaría detener el fraccionamiento de hábitat alrededor de las Áreas Naturales Protegidas, lo que podría conllevar a su insostenibilidad a futuro. Al respecto, es preciso mencionar que los Sistemas Regionales de Conservación cuentan con un espacio de coordinación donde se reúnen las principales instituciones que gestionan territorio y en la cual se discuten las iniciativas de desarrollo social y económico para que se realicen en armonía con la conservación de la biodiversidad del país, el SERNANP forma parte de estos espacios a nivel nacional.

Citation

Finer M, Novoa S (2015) Importance of Protected Areas in the Peruvian Amazon. MAAP: Image #11. Link: https://www.maapprogram.org/2015/08/image-11-protected-areas