MAAP 17: Birth of a New Illegal Gold Mining Zone in the Peruvian Amazon [High Resolution View]

In MAAP #12, we featured a high resolution image from July 29, 2015 of the area known as “La Pampa,” a hotspot of illegal mining in the buffer zone of the Tambopata National Reserve (Madre de Dios region, Peru).

Just seven weeks later, we obtained a new high resolution image of La Pampa for September 16, 2015. Image 17a shows the birth of a new gold mining zone between the July image (left panel) and September image (right panel) (see the letter “A” in Image 17b for context). The current extent of this new clearing is 1.5 hectares. This mining activity is illegal since it is located within the buffer zone of the Tambopata National Reserve.

La Pampa 20150916_ZoomA_horizontalV3

Reference Map

Image 17b is the reference map, showing the forest cover change between July (left panel) and September (right panel) 2015. In the right panel, the letter “A” corresponds to Image 17a, while the letter “B” corresponds to Image 17c.

Image 17b. Reference map. Data: WorldView Digital Globe (NextView).
Image 17b. Reference map. Data: WorldView Digital Globe (NextView).

Expanding Deforestation

Image 17c shows the deforestation expanding to the west between July (left panel) and September (right panel) 2015.

La Pampa 20150916_ZoomB_english
Image 17c. Deforestation expanding to the west between July and September 2015. Data: WorldView Digital Globe (NextView).

Citation

Finer M, Olexy T (2015) High Resolution View: Birth of a New Illegal Mining Zone. MAAP #17.

 

MAAP #16: Oil Palm-driven Deforestation in the Peruvian Amazon (Part 2: Shanusi)

In MAAP #4 we described the major deforestation caused by two new large-scale oil palm projects in the central Peruvian Amazon (Nueva Requena, Ucayali region).

Here in MAAP #16, we describe the major deforestation related to two other oil palm projects, Palmas del Shanusi and Palmas del Oriente, in the northern Peruvian Amazon (regions Loreto and San Martin). These projects (operated by Grupo Palmas, an agriculture company owned by Grupo Romero) cover 10,029 hectares.

MAAP_Shanusi_16a_v3_en
Image 16a. Deforestation within and around the two large-scale oil palm projects Palmas del Shanusi and Oriente. Data: PNCB, USGS, Grupo Palmas.

Image 16a shows the extensive forest clearing within and around Palmas del Shanusi and Oriente. The 2000-2014 forest loss data comes from the Peruvian government (PNCB-MINAM/SERFOR-MINAGRI) and the 2015 data comes from our analysis of Landsat imagery using CLASlite forest monitoring software.

Within the two projects, we documented that Grupo Palmas cleared 6,974 hectares of primary forest between 2006 and 2011 (see Images 16a and 16). This represents 70% of the projects’ area (Peruvian law requires the conservation of 30% of an agricultural project area’s forest cover). Thus, a key issue is that the Peruvian legal framework, under certain conditions, allows the clearing of thousands of hectares of primary forest for large-scale agriculuture projects (see the report Deforestation by Definition by the Environmental Investigation Agency for more details).

We defined primary forest as an area characterized by dense, closed-canopy coverage from the earliest available Landsat image (in this case 1994) until immediately prior to plantation installation.

Importantly, we also documented the clearing of an additional 9,840 hectares of primary forest immediately surrounding the projects (see Images 16a and 16b). There was clearing of more than a thousand hectares each year between 2010 and 2013, followed by another thousand hectares between 2014 and 2015. Analysis of high-resolution imagery confirms that much of this additional clearing resulted in large-scale model oil palm plantations.

In total, we documented the clearing of over 16,800 hectares of primary forest for large-scale oil palm plantations within and around Palmas del Shanusi and Oriente. It is important to note that there has now been more forest clearing outside than inside the original projects, an important lesson for other new agricultural areas such as Tamshiyacu.

MAAP_Shanusi_16d_v2_en
Image 16b. Primary forest cleared within and around Grupo Palmas projects.

High Resolution Zooms

Following is a series of high resolution zooms showing examples of forest clearing within and around Palmas del Shanusi and Oriente. Image 16c is the reference map indicating the location of the various zooms (Images 16d – 16g). Zooms 16d and 16e show the same area before (left panel) and after (right panel) forest clearing. Zooms 16f and 16g show areas of recent forest clearing.

MAAP_Shanusi_16b_v4_en
Image 16c. Reference Map. Data: USGS.
MAAP_Shanusi_16c_a_v4_m_en
Image 16d. High-resolution zoom A; deforestation outside the Grupo Palmas project. Data: Google Earth, WorldView-2 from Digital Globe (NextView).
MAAP_Shanusi_16c_b_v3_m_en
Image 16e. High-resolution zoom B; forest clearing within the Grupo Palmas project. Data: Google Earth, WorldView-2 from Digital Globe (NextView).
MAAP_Shanusi_16c_v2_c3_e
Image 16f. High-resolution zoom C. Data: Google Earth, WorldView-2 from Digital Globe (NextView).
MAAP_Shanusi_16c_v2_d2_e
Image 16g. High-resolution zoom D. Data: Google Earth, WorldView-2 from Digital Globe (NextView).

References

This work builds off of information presented in the following publication: Environmental Investigation Agency. Deforestation by Definition. 2015. Washington, DC. Link: http://eia-global.org/news-media/deforestation-by-definition

Citation

Finer M, Novoa S (2015) Oil Palm-driven Deforestation in the Peruvian Amazon (Part 2: Shanusi) MAAP: Image #16. Link: https://www.maapprogram.org/2015/10/image16-shanusi/

MAAP Synthesis #1: Patterns and Drivers of Deforestation in the Peruvian Amazon

We present a preliminary analysis of current patterns and drivers of deforestation in the Peruvian Amazon. This analysis is largely based on the first 15 articles published on MAAP between April and September 2015, but also incorporates information from other relevant sources. We describe this analysis as preliminary because as MAAP research continues, we will be able to improve and refine our synthesis in subsequent editions.

MAAP_Synthe_Sa_v4_en
Image S1a. Recent patterns and drivers of deforestation in the Peruvian Amazon. Numbers indicate relevant MAAP article. Data: SERNANP, IBC, MINAM-PNCB/MINAGRI-SERFOR, MAAP.

Introduction & Summary of Key Results

Image S1a illustrates recent (2000 – 2013) patterns of deforestation in the Peruvian Amazon based on data from the Peruvian Ministries of Environment[i] and Agriculture[ii]. These two Ministries have documented a total forest loss of around 1.65 million hectares (ha) in the Peruvian Amazon between 2001 and 2014, with an increasing trend in recent years (2014 had the highest forest loss on record with 177,571 ha)[iii],[iv]. Another recent report by the Peruvian government stated that the majority (75%) of the Amazonian deforestation is due to small-scale clearings related to agriculture and livestock activities, usually near roads or rivers[v].

Building off of that historical and annual information, our goal at MAAP is to monitor deforestation in near real-time. Since April 2015, we have published numerous articles analyzing areas in the northern, central, and southern Peruvian Amazon. In this initial analysis, we have found that three of the most important drivers of deforestation are large-scale oil palm (and cacao) plantations, gold mining, and coca cultivation. We also found a growing network of logging roads that contribute to forest degradation. Image S1a displays the general geographic distribution of these drivers of deforestation and degradation.

We estimate that around 30,000 hectares of primary forest was cleared since 2000 for large-scale oil palm and cacao plantations. Cacao has recently joined oil palm as a deforestation driver due to the arrival of the company United Cacao and their implementation of the large-scale agro-industrial model in place of traditional small-scale plantations on previously degraded lands.

Gold mining has directly caused the deforestation of over 43,000 ha since 2000, mostly in the region of Madre de Dios. In recent years, this deforestation has been concentrated in the Tambopata National Reserve buffer zone.

Although coca cultivation is reportedly declining in Peru, we found that it remains a major driver of deforestation, particularly within and around remote protected areas. For example, we documented 143 ha of coca related deforestation within the Sierra del Divisor Reserved Zone, and an additional 2,638 ha related to shifting agricultural cultivation, which includes coca, within and around Bahuaja Sonene National Park.

We also documented a recent expansion of logging roads in the central Peruvian Amazon. This finding is significant because it is difficult to detect selective logging in satellite imagery, but now we can at least detect the roads that indicate that selective logging is taking place in a given area.

We identified some important geographic patterns related to the four drivers described above. For example, large-scale oil palm (and cacao) are concentrated in the northern Peruvian Amazon, while gold mining deforestation has largely been in the south. Coca-driven deforestation appears to be particularly problematic in the southern Peruvian Amazon, but also exists in the north. The construction of new logging roads is currently most active in the central Peruvian Amazon.

The documented deforestation is caused by both illegal and legal means. For the former, there is extensive deforestation from illegal gold mining and coca cultivation. Regarding the latter, oil palm and cacao companies are exploiting loopholes in the Peruvian legal framework that facilitate large-scale deforestation for agricultural projects.

Large-scale Agriculture (Oil Palm and Cacao)

MAAP_Synthe_Sb_v4_en
Image S1b. Large-scale agriculture deforestation in the northern Peruvian Amazon. Numbers indicate relevant MAAP article. Data: SERNANP, IBC, MINAM-PNCB/MINAGRI-SERFOR, MAAP.

Image S1b illustrates that large-scale agriculture (namely oil palm and cacao) is an important cause of deforestation in northern Peru.

Importantly, several oil palm and cacao companies are changing the production model in Peru from small-scale to large-scale agro-industrial. For example, in a recent interview, United Cacao CEO Dennis Melka stated that his company is trying to replicate the agro-industrial model used by oil palm companies in Southeast Asia[vi].

This shift is noteworthy because large-scale plantations usually come at the expense of forests, while small-scale plantations are better able to take advantage of previously cleared lands[vii]. We estimate that over 30,000 hectares of primary forest was cleared since 2000 for large-scale oil palm and cacao plantations (see below). Much less primary forest, around 575 ha, was cleared for small-scale oil palm (we have yet to evaluate small-scale cacao).

Note that we emphasize the clearing of primary forest. We conducted an additional analysis to determine whether oil palm (both small and large-scale) and cacao (just large-scale) plantations were originally sited on lands with primary forest, secondary forest, or already deforested. We defined primary forest as an area that from the earliest available Landsat, in this case 1990, was characterized by dense closed canopy forest cover.

The following is a concise breakdown of how we calculated the 30,000 ha of primary forest loss from large-scale plantations.

MAAP articles #2, #9, and #13 demonstrated that 2,276 ha of primary forest was cleared by United Cacao between May 2013 and September 2015 outside of the town of Tamshiyacu in the northern Peruvian Amazon (Loreto region).

MAAP article #4 detailed the deforestation of 9,400 ha of primary forest (plus an additional 2,350 ha of secondary forest) between 2011 and 2015 for two large-scale oil palm projects near the town of Nueva Requena in the central Peruvian Amazon (Department of Ucayali).

In addition, yet unpublished MAAP analysis shows that in Palmas de Shanusi/Oriente (oil palm projects operated by the company Grupo Palmas), 6,974 ha of primary forest were cleared between 2006 and 2011, although the legally mandated 30% forest cover reserves were maintained. An additional 8,225 ha of primary forest was cleared in areas immediately surrounding the concessions.

Finally, although not yet published on MAAP, we also documented nearly 3,500 ha of primary forest loss in other large-scale oil palm projects in San Martin and Ucayali regions.

It is important to emphasize that several oil palm and cacao companies are exploiting various loopholes in the Peruvian legal framework that facilitate large-scale deforestation for agricultural projects[viii]. In fact, these companies argue that according to Peruvian law, they are engaged in legal “forest clearing”, not illegal “deforestation”[ix].

Gold Mining

MAAP_Synthe_Sc_v4_en
Image S1c. Gold mining deforestation in the Peruvian Amazon. Numbers indicate relevant MAAP article. Data: SERNANP, IBC, MINAM-PNCB/MINAGRI-SERFOR, MAAP.

Image S1c illustrates that gold mining-driven deforestation is largely concentrated in the southern Peruvian Amazon, particularly in the region of Madre de Dios and adjacent Cusco.

According to the scientific literature, gold mining deforestation in Madre de Dios increased from 10,000 ha in 2000 to 50,000 ha in 2012[x]. MAAP articles #1, #5, and #12 documented the deforestation of an additional 2,774 ha between 2013 and 2015 in two gold mining hotspots (La Pampa and Upper Malinowski), both of which are located within the buffer zone of the Tambopata National Reserve. In addition, MAAP #6 showed gold mining deforestation expanding from another Madre de Dios gold mining hotspot (Huepetuhe) into the tip of Amarakaeri Communal Reserve (11 ha).

Much of the Madre de Dios gold mining deforestation described above is illegal because it is occurring within and around protected areas where mining is not permitted under the government-led formalization process.

MAAP articles #6 and #14 detailed recent gold mining deforestation in the region of Cusco. Specifically, we documented the deforestation of 967 ha along the Nuciniscato River and its major tributaries since 2000 (with the vast majority occurring since 2010). Much of this deforestation appears to be linked to gold mining.

Thus, the total documented gold mining deforestation in Madre de Dios and adjacent Cusco is at least 53,750 ha[xi], over 80% of which has occurred since 2000. This total is an underestimate since we have not yet done detailed studies for 2013 – 2015 deforestation in all of the known gold mining zones in these two regions.

In addition, MAAP #7 showed two gold mining zones in the region of Ucayali (along the Sheshea and Abujao Rivers, respectively). Much of this deforestation occurred between 2000 and 2012.

Finally, there are also reports of extensive gold mining in northern Peru (the regions of Amazonas and Loreto) but we do not yet have data showing that it is causing deforestation.

Coca

MAAP_Synthe_Sd_v4_en
Image S1d. Coca cultivation areas in the Peruvian Amazon. Numbers indicate relevant MAAP article. Data: UNODC 2014, MINAM-PNCB/MINAGRI-SERFOR, SERNANP, NatureServe.

Although the most recent report from the United Nations Office on Drugs and Crime (UNODC) indicates that overall coca cultivation is declining in Peru[xii], our research finds that it remains a major driver of deforestation in certain areas, particularly within and around several remote protected areas.

Image S1d displays the distribution of current coca-cultivation areas (in relation to protected areas) based on the data from the latest United Nations report. Of these areas, we have thus far focused on the three detailed below.

MAAP articles #7 and #8 show recent coca-related deforestation within the southern section of the Sierra del Divisor Reserved Zone. This area is particularly important because it is soon slated to be upgraded to a national park. Specifically, we documented coca-related deforestation of 130 ha between 2013 and 2014 within the southwestern section of the reserve, and, most recently, a new plantation of 13 ha during June 2015 within the southeast section.

MAAP article #10 revealed that shifting agricultural cultivation, that includes coca, is also a major issue within and around Bahuaja Sonene National Park, located in the southern Peruvian Amazon. Specifically, we found the recent deforestation of 538 hectares within the southern section of the Park, and an additional 2,100 hectares in the surrounding buffer zone. Much of this deforestation is likely linked to coca cultivation since the latest United Nations report indicates these areas contain high coca plantation densities.

MAAP article #14 documents the deforestation of 477 ha along the Nojonunta River in Cusco since 2000 (with a major peak since 2010). Much of this deforestation is likely linked to coca cultivation since the latest United Nations report indicates these areas contain medium to high coca plantation densities. 

Logging Roads

MAAP_Synthe_Se_v4_en
Image S1e. Logging roads in the Peruvian Amazon. Numbers indicate relevant MAAP article. Data: SERNANP, IBC, MINAM-PNCB/MINAGRI-SERFOR, MINAGRI, MAAP.

One of the major advances discovered in this work is the ability to identify the expansion of new logging roads. This advance is important because it is extremely difficult to detect illegal logging in satellite imagery because loggers in the Amazon often selectively cut high value species and do not produce large clearings. But now, although it remains difficult to detect the actual selective logging, we can detect the roads that indicate that selective logging is taking place in that area.

Image S1e illustrates the likely logging roads that we have recently detected. Of these areas, we have thus far focused on the two detailed below.

MAAP article #3 shows the rapid proliferation of two new road networks in the northern Peruvian Amazon (Loreto region). Most notably, it highlights the construction of 148 km of new roads, possibly illegal logging roads, through mostly primary forest between 2013 and 2014. One of the roads is within the buffer zone of the Cordillera Azul National Park.

In addition, MAAP article #7 shows the expansion of new logging roads near both the southern and northwestern sections of the Sierra del Divisor Reserved Zone. In both cases, the expansion is very recent (between 2013 and 2015).

 

[i] National Program of Forest Conservation for the Mitigation of Climate Change – PNCB.

[ii] Servicio Nacional Forestal y de Fauna Silvestre – SERFOR

[iii] MINAGRI-SERFOR/MINAM-PNCB (2015) Compartiendo una visión para la prevención, control y sanción de la deforestación y tala ilegal.

[iv] Note that some of the documented forest loss may come from natural causes, such as landslides or meandering rivers.

[v] MINAM (2013) Fondo Cooperativo Para El Carbono de los Bosques (FCPF) Plantilla de Propuesta para la Fase de Preparación para REDD+ (Readiness Plan Proposal – RPP). Link: http://www.minam.gob.pe/cambioclimatico/wp-content/uploads/sites/11/2014/03/R-PP-Per%C3%BA-Final-Dec-2013-RESALTADO_FINAL_PUBLICADA-FCPF_24-febrero.pdf

[vi] NF Joan (2015) United Cacao replicates Southeast Asia’s plantation model in Peru, says CEO Melka. The Edge Singapore.Link: http://www.unitedcacao.com/images/media-articles/20150713-the-edge-united-cacao.pdf

[vii] Gutiérrez-Vélez VH, DeFries R, Pinedo-Vásquez M, et al. (2011) High-yield oil palm expansion spares land at the expense of forests in the Peruvian Amazon. Environ. Res. Lett., 6, 044029. Link: http://iopscience.iop.org/article/10.1088/1748-9326/6/4/044029/pdf

[viii] Environmental Investigation Agency (2015) Deforestation by Definition. Washington, DC. Link: http://eia-global.org/news-media/deforestation-by-definition

[ix] Tello Pereyra R (2015) Situacion legal, judicial, y administrativa de  Cacao del Peru Norte SAC. Link: https://www.youtube.com/watch?v=p_YIe70u1oA

[x] Asner GP, Llactayo W, Tupayachia R, Ráez Luna E (2013) PNAS 110 (46) 18454-18459. Link: http://www.pnas.org/content/110/46/18454.abstract

[xi] That is, 50,000 ha from the literature and 3,750 ha from MAAP analysis.

[xii] UNODC (2015) Monitoreo de cultivos ilícitos Perú 2014. Link: https://www.unodc.org/documents/crop-monitoring/Peru/Peru_Informe_monitoreo_coca_2014_web.pdf

Citation

Finer M, Novoa S (2015) Patterns and Drivers of Deforestation in the Peruvian Amazon. MAAP Synthesis #1. Link: https://www.maapprogram.org/2015/09/maap-synthesis1/

Image #15: Sierra del Divisor – New logging road threatens northern section of proposed national park

In MAAP #7, we emphasized the need to promote the Sierra del Divisor Reserved Zone to the category of National Park due to the growing threats within and around the area. Here in MAAP #15, we show how the construction of a new logging road threatens the northwest section of the current Reserved Zone. New high-resolution images reveal that the construction of this logging road has continued to expand in 2015, and now even crosses a corner of the Reserve.

In addition, in anticipation of the upcoming visit of Peruvian President Ollanta Humala to the United Nations in New York to discuss climate change, we present data on the levels of carbon stored in the proposed Sierra del Divisor National Park.

Image 15a. Landsat (30 m res) images of the new logging road crossing the Sierra del Divisor Reserved Zone. Data: USGS, SERNANP

Image 15a shows the most recent expansion of the logging road between June (left panel) and September (right panel) 2015. For more context, note that the area displayed in Image 15a corresponds to the dashed box marked with the letter “A” in Image 15c.

Image 15b displays a high-resolution (1.5 m) image from August 7 of the section of road crossing the northern section of the Sierra del Divisor Reserved Zone.

Image 15b. High-resolution image of logging road crossing northern tip of Reserved Zone. Data: SPOT 7 Airbus.

Expansion 2012 – 2015

In Figure 15c, we show the expansion of this logging road from 2012 to 2015, totaling approximately 75 km of new road construction during these three years.

Image 15c. Expansion of the logging road in the northeast sector of the Reserve Zone. Data: MINAM-PNCB/MINAGRI-SERFOR, SERNANP, USGS.
Image 15c. Expansion of the logging road in the northeast sector of the Reserve Zone. Data: MINAM-PNCB/MINAGRI-SERFOR, SERNANP, USGS.

Carbon Data

Sierra_divisor_carbom_asner1_e
Imagen 15d. High-resolution carbon geography of Sierra del Divisor area. Data: Asner et al. 2014 a,b.

 

Dr. Greg Asner (from the Carnegie Institution for Science) and colleagues recently produced a high-resolution carbon map of Peru (Asner et al. 2014 a,b).

According to this data, the Sierra del Divisor Reserved Zone has the second largest carbon stock among all Peruvian protected areas (behind only Alto Purus National Park).

As seen in Image 15d, much of the proposed national park area contains high to very high carbon levels. Using this data, we calculated that the proposed Sierra del Divisor National Park contains approximately 165 million metric tons of above-ground carbon.

 

 

 

 

 

 

 

 

 

 

 

 

SERNANP Response

In response to this article, SERNANP (the Peruvian protected areas agency) issued this statement:

The deforestation alert in the northwest sector parallel to the Sierra del Divisor Reserved Zone is caused by the improvement of an alleged older road that runs along the natural protected area, which is being operateded by a neighboring forest concessionaire. We denounced this before the Special Prosecutor for Environmental Matters in Loreto in 2012, as we considered it irregular and a threat to the protected area.

[La deforestación que se advierte en el sector noroeste paralelo a la Zona Reservada Sierra del Divisor se origina por el mejoramiento de una supuesta carretera antigua que viene ejecutando un concesionario forestal colindante con el área natural protegida, la cual denunciamos ante la Fiscalía Especializada de Materia Ambiental – Loreto en el año 2012, por considerarla irregular y constituirse en una amenaza a este espacio protegido.]

This past August, the Special Prosecutor scheduled an inspection, which was conducted jointly with the Public Prosecutor of the Ministry of the Environment. We have been making every effort to ensure that the Special Prosecutor performs the corresponding actions according to law, such as requiring OSINFOR to supervise the forest concessionaire due to the irregular events that we denounced.

[Recién en agosto último la Fiscalía programó la inspección fiscal, que se realizó conjuntamente con la Procuraduría Pública del Ministerio del Ambiente, en la cual venimos realizando todos los esfuerzos para que la Fiscalía Especializada realice las actuaciones que corresponde de acuerdo a Ley, así como requerir al OSINFOR supervise al concesionario forestal, por los hechos irregulares que denunciamos.]

Lima, 17 de setiembre del 2015

References

Asner GP, Knapp DE, Martin RE, Tupayachi R, Anderson CB, et al. (2014 a) Targeted carbon conservation at national scales with high-resolution monitoring. Proceedings of the National Academy of Sciences, 111(47), E5016-E5022.

Asner GP, Knapp DE, Martin RE, Tupayachi R, Anderson CB, et al. (2014 b) The high-resolution carbon geography of Peru. Berkeley, CA: Minuteman Press.

Citation

Finer M, Novoa S (2015) Sierra del Divisor – New logging road crosses northern section of Reserve Zone MAAP: Image #15. Link: https://www.maapprogram.org/2015/09/image15-sierra-divisor/

Image #14: Cusco – Increasing Deforestation Driven by Coca and Gold Mining

In MAAP #14 we take our first detailed look at the region of Cusco. The city of Cusco is of course well known as the former capital of the Inca empire and current gateway to Machu Picchu, but the greater Cusco region is a vast area including large tracts of Amazon forest. Here, we focus on the eastern Cusco region, an area that is experiencing increasing deforestation from gold mining and coca cultivation.

Cusco_MAAP_12a_v4
Image 14a. Recent deforestation patterns in northeast Cusco region. Data: PNCB, USGS, SERNANP, IBC.

Key Results

We highlight two major expanding deforestation zones in the eastern Cusco region. Both zones are along major tributaries of the Araza River, which itself is a tributary of the Inambari River.

1) Nuciniscato River (see Zoom A). We documented a major deforestation spike since 2010 along this river and its major tributaries. Since 2010, there has been deforestation of 764 ha, much of which appears to be related to gold mining.

2) Nojonunta River (see Zoom B). We document a recent (2014) deforestation surge in this area, much of which appears to be related to coca cultivation.

Data Description

In the following maps:

Any variation of green in the satellite imagery indicates areas of forest cover.

Yellow (2000-2004), orange (2005-2008), red (2009-2012), and purple (2013) indicate areas that were deforested between 2000 and 2013 according to data from the National Program of Forest Conservation for the Mitigation of Climate Change (PNCB) of the Ministry of the Environment of Peru.

The colors pink (2014) and turquoise (2015) indicate areas that were deforested in the last two years based on our analysis of Landsat imagery using CLASlite forest monitoring software.

Zoom A: Nuciniscato River

Cusco_MAAP_12b_v3
Image 14b. Zoom A (see Image 12a for context). Data: PNCB, USGS, SERNANP, IBC.

We documented the deforestation of 967 ha along the Nuciniscato River and its major tributaries since 2000. Image 14b shows that the vast majority (79% or 764 ha) of this deforestation has occurred since 2010. Peak deforestation occurred in 2012 (219 ha) and dipped slightly in 2014 (115 ha).

As noted in MAAP #6, part of this deforestation (along the upper Nuciniscato River) is entering the buffer zone of the Amarakaeri Communal Reserve.

Zooms A1 and A2: Examples of Deforestation in 2015

To better understand the principal deforestation drivers along the Nuciniscato River, we acquired high resolution satellite imagery. Much of the recent deforestation since 2010 is characteristic of gold mining: along river courses with forest clearing, earth removal, and waste-water lagoons. Images 14c and 14d both show very recent deforestation (between February and August 2015) with these characteristics.

Cusco_MAAP_12c_v5_m
Image 14c. Zoom A1 (see Image 14b for context). Data: SPOT 7 from Airbus, GeoEye from Digital Globe (NextView).
Cusco_MAAP_12d_v5_m
Image 14d. Zoom A2 (see Image 14b for context). Data: SPOT 7 from Airbus, GeoEye from Digital Globe (NextView).

Zoom B: Nojonunta River

Cusco_MAAP_12e_v3
Image 14e. Zoom B (see Image 21a for context). Data: PNCB, USGS.

We documented the deforestation of 477 ha along the Nojonunta River since 2000. Image 14e shows that the vast majority (85% or 403 ha) of this deforestation has occurred since 2010. Peak deforestation occurred in 2014 (207 ha), particularly in the upper Nojonunta.

Zoom B1: Deforestation Driven by Coca Cultivation

Cusco_MAAP_12f_v2_m
Image 14f. Zoom B1. Data: SPOT 7 from Airbus, UNODC 2014.

In the recent UNODC (United Nations Office on Drugs and Crime) report “Monitoreo de Cultivos de Coca 2014” [Coca Crop Monitoring 2014], it was reported that the area around the Nojonunta River (coca zone San Gabán) has a medium to high density of coca cultivation.

Image 14f displays the UNODC coca density data (left panel) in relation to a recent high resolution satellite image of the area (right panel). Thus, the data indicates that coca cultivation is a major driver of the deforestation detected in this case.

Citation

Finer M, Novoa S (2015) Increasing deforestation in Northeast Cusco region from coca and gold mining. MAAP: Image #14. Link: https://www.maapprogram.org/2015/09/image-14-cusco/

MAAP #13: Clearing of Primary Forest for Cacao Resumes in Tamshiyacu (Loreto, Peru)

As confirmed in MAAP #9, the company United Cacao (through its subsidiary in Peru, Cacao Peru North) cleared 2,126 hectares of primary forest between May 2013 and August 2014 to establish a large-scale cacao plantation outside the town of Tamshiyacu, in northeastern Peru (Loreto region). New satellite imagery reveals that the forest clearing has recently resumed in 2015. We detected the cutting of 150 hectares in recent months, bringing the total area cleared as part of the United Cacao project to 2,276 hectares.

Tamshiyacu 3panel Ingles_v2

Image 13a shows a series of satellite images (NASA Landsat) taken between November 2014 and August 2015. In these images, a clearing of 24 hectares was detected in the period from November 2014 to June 2015. This reduction in forest clearing was possibly because of the Resolution issued by the Ministry of Agriculture, which temporarily paralyzed the agricultural activities of United Cacao.

However, more recent images have revealed a large increase in forest clearing – 126 hectares – between June and August 2015.

This brings to 2,276 ha the total forest clearing generated by the United Cacao project between May 2013 and August 2015.

In the Landsat images, the dark green color indicates forest cover, the light green secondary vegetation, the pink color indicates exposed ground (a key indicator of forest clearing), while scattered patches in black and white indicate clouds and their shadows.

Forest clearing between June and August 2015

MAAP13_Tam_13d_v4
Image 13b Base map indicating the location of a series of zooms. Data: USGS.

Image 13b indicates the location of a number of zooms (see below) that clearly illustrate the forest clearing that occurred between June and August 2015. The images 13c  13e are of each respective zoom and show each area before and after the forest clearing. Note that Worldview-3 imagery resolution is 33 cm and Worldview-2 imagery resolution is 50 cm.

 

 

 

 

 

 

 

 

 

MAAP13_Tam_13e_a_m_v3
Imagen 13c. Zoom A. Data: WorldView from Digital Globe (NextView).
MAAP13_Tam_13e_b_m_v3
Image 13d. Zoom B. Data: WorldView from Digital Globe (NextView).
MAAP13_Tam_13e_c_m_v2
Image 13e. Zoom C. Data: WorldView from Digital Globe (NextView).

Changing the Cacao Production Model in Peru

According to a recent interview with the President of United Cacao, the company is adopting the agro-industrial model. In other words, it is changing cacao production in Peru from the traditional small-scale model sited on long-deforested land for the agro-industrial model that requires large land parcels that are normally occupied by forests.

Image #12: High-resolution View of Illegal Gold Mining Deforestation in La Pampa (Madre de Dios, Peru)

In MAAP #1, we described the expansion of deforestation through February 2015 in La Pampa, a gold mining hotspot located in the Madre de Dios region in the southern Peruvian Amazon. Since then, we have obtained a new high-resolution image showing the current situation (as of late July 2015) in great detail in La Pampa.

Here in MAAP #12, we present an analysis with the following three objectives: 1) Update data for the recent expansion of gold mining deforestation in La Pampa, 2) show a series of high-resolution images that illustrate the scale and magnitude of current gold mining operations, and 3) illustrate how the Tambopata National Reserve currently represents a good defense against deforestation expansion.

13A_v7_english - Copy (1)
Image 12a. High-resolution images showing the expansion of deforestation by gold mining in La Pampa between August 2014 and July 29, 2015. Data: GeoEye and WorldView2 from Digital Globe (NextView).

Image 12a shows, in high resolution, the expansion of gold mining deforestation in La Pampa during the last year (between August 2014 and July 2015). The red square indicates the main zone of deforestation.

Deforestation 2014-15

La Pampa_CLASlite LossV5 english
Image 12b. CLASlite Results 2014-15. Data: USGS, SERNANP.

Image 12b shows the CLASlite results of the expansion of gold mining deforestation in La Pampa during the past year (between August 2014 and July 2015). We found deforestation of 725 hectares (Ha) in the last year, including 224 Ha since February (the date of the last image analyzed in the MAAP #1). This equates to nearly 1,000 soccer fields of deforestation throughout the year.

High Resolution View – July 2015

This series of maps illustrates the scale and magnitude of gold mining operations in La Pampa as of July 29, 2015, just two weeks after a major raid by the Peruvian government against illegal gold mining camps.

13c Zooms_BCDE v6
Image 12c. Zoom A (see Image 12a for context). Date of image: July 29, 2015. Data: WorldView2 from Digital Globe (NextView).

Image 12c displays, in high-resolution, the current center of the mining activity in La Pampa. Note that it is a zoom of zone A indicated in Image 12a. One can see the high density of gold mining operations and infrastructure in almost every area of the image. Also note in Image 12c that the location of four additional zooms described below are also shown.

Images 12d g show a series of additional zooms from four different locations within the center of the current mining activity in this sector of La Pampa and highlights the scale and magnitude of operations.

13d ZoomB v6
Image 12d. Zoom B (see Image 12c for context). Data: WorldView2 from Digital Globe (NextView).
13e ZoomC v6
Image 12e. Zoom C (see Image 12c for context). Data: WorldView2 from Digital Globe (NextView).
13f ZoomD v6
Image 12f. Zoom D (see Image 12c for context). Data: WorldView2 from Digital Globe (NextView).
13g ZoomE v6
Image 12g. Zoom E (see Image 12c for context). Data: WorldView2 from Digital Globe (NextView).

Tambopata National Reserve: Defense Against Deforestation

Image 12h illustrates how the Tambopata National Reserve remains a good defense against deforestation.

ZoomH v5_english
Image 12h. Tambopata National Reserve. Date of Image: July 29, 2015. Data: WorldView2 from Digital Globe (NextView).

SERNANP Response

In response to this article, SERNANP (the Peruvian protected areas agency) issued this statement:

The area known as La Pampa is located in the buffer zone of the Tambopata National Reserve (RNTAMB) in the Madre de Dios region.

“El sector denominado La Pampa se encuentra ubicado en la zona de amortiguamiento de la Reserva Nacional Tambopata (RNTAMB) en la región Madre de Dios.”

In its capacity as lead agency of natural protected areas of Peru, SERNANP has been making great efforts to deal with illegal mining and other activities that threaten the Reserve. As part of these actions, we carried out monitoring in this region through images from LANDSAT 8). This monitoring system has confirmed the excellent state of conservation of the Reserve. Information has also been collected by park guards on patrols conducted along the Malinowski River and on monitoring trails located within the protected area.

“En su calidad de ente rector de las áreas naturales protegidas del Perú, el SERNANP viene realizando grandes esfuerzos para hacer frente a la minería ilegal y otras actividades que amenacen a la Reserva. Como parte de estas acciones se realiza un monitoreo mediante imágenes (LANSAT 8), sistema que ha corroborado el óptimo estado de conservación de la Reserva,  información que ha sido recopilada también por los guardaparques en los patrullajes realizados a lo largo del río Malinowski y en las trochas de monitoreo ubicadas al interior del área protegida.”

Similarly, this system has allowed SERNANP to collect information on threats in the buffer zone, data that has been shared promptly with leading authorities on illegal mining. This information is centered on points of access to the buffer zone, trails, gas stations, distances, among others; this has contributed to the development and implementation of the strategy against illegal mining in the Tambopata Natural Reserve.

“Asimismo, este sistema ha permitido recopilar información sobre las amenazas  en la zona de amortiguamiento, datos que han sido compartidos oportunamente con las principales autoridades competentes en materia de minería ilegal. Esta información está centrada en puntos de acceso a la zona de amortiguamiento, trochas, grifos, distancias, entre otros; lo que ha contribuido en la elaboración y aplicación de la estrategia de la RN Tambopata contra la minería ilegal.”

This strategy also includes the continued involvement and support of the Chief of the Tambopata National Reserve on issues related to the promotion of economic activities and the exploitation of natural resources by local populations, promoting tourism as a strategy for conservation of the protected area, lectures on environmental education, and others.

“Esta estrategia comprende también la permanente participación y apoyo de la Jefatura de la Reserva Nacional Tambopata en temas relacionados con el impulso de actividades económicas como el aprovechamiento de recursos naturales por parte de las poblaciones locales, la promoción del turismo como estrategia de conservación del área protegida, charlas de educación ambiental, entre otros.”

Citation

Finer M, Olexy T (2015) High Resolution View of Illegal Gold Mining in La Pampa (Madre de Dios, Peru). MAAP #12. Link: https://www.maapprogram.org/2015/08/image12-lapampa/

 

Image #11: Importance of Protected Areas in the Peruvian Amazon

The Peruvian national protected areas system, known as SINANPE, is critically important to Amazon conservation efforts in the country.

There are currently 46 protected areas in the Peruvian Amazon under national or regional administration*. In total, these areas cover 19.5 million hectares and include a wide variety of designations, including areas of indirect use (those with strict protection, such as National Parks) and direct use (those that allow the exploitation of natural resources, such as National Reserves) under national administration and Regional Conservation Areas  under regional administration.

Here, MAAP #11 presents a deforestation analysis that demonstrates the effectiveness of protected areas in relation to the surrounding landscape in the Peruvian Amazon.

MAAP_All_ANP_11a_v4_e
Image 11a. Recent forest loss in relation to protected areas in the Peruvian Amazon. Data: SERNANP, PNCB-MINAM/SERFOR-MINAGRI, NatureServe.

Key Results

Image 11a shows recent (2000 – 2013) forest loss patterns in relation to the current national protected area system in the Peruvian Amazon (Image 11b shows the same, but with zooms of the northern, central, and southern regions, respectively).  Note that some of the documented forest loss surely comes from natural causes, such as landslides or meandering rivers.

Across all protected areas administered nationally (such as National Parks and National Reserves), we found that deforestation was significantly lower starting at 2 km within their boundaries compared to outside them (see Images 11b and 11c).

The rate of deforestation outside of protected areas is more than twice of that within them (within the 5 km buffer zone study area, see below).

MAAP_All_ANP_11b_v2_z_m
Image 11b. Regional zooms (north, central, south) of recent forest loss in relation to protected areas. Data: SERNANP, PNCB-MINAM/SERFOR-MINAGRI, NatureServe.

Deforestation Analysis – Methods

We conducted a basic analysis of all protected areas administered nationally (National Park, National Sanctuary, Historic Sanctuary, National Reserve, Protection Forest, Communal Reserve, and Reserved Zone) to estimate their relative effectiveness in controlling deforestation in relation to the surrounding landscape. The forest loss data comes from the National Program of Forest Conservation for the Mitigation of Climate Change (PNCB) of the Ministry of the Environment of Peru. This deforestation analysis had two key components.

MAAP_All_ANP_11b_v3_
Image 11c. Illustration of spatial intervals for deforestation analysis.

First, we compared recent forest loss within versus outside each protected area at four different spatial intervals: 1 km, 2 km, 3 km, and 5 km (see Image 11c). In other words, starting at the boundary line for each area, we created a 1 km buffer both inside and outside the area and compared the relative (forest loss/area *100) deforestation. We then repeated this analysis for the other intervals. The establishment of these intervals areas is based on the assumption that the closer to the limits of each protected area, deforestation could be more related to anthropogenic activities in surrounding areas, which is expected to reduce the effect of natural losses due to changes in the courses of rivers and landslides in unstable areas.

Second, we controlled for protected area creation date. If an area was created prior to 2000, such as Manu National Park created in 1973, we used the complete 2000-2013 PNCB forest loss dataset. If an area was created after 2000, such as Alto Purus National Park created in 2004, we used just the forest loss dataset for the years following its creation (in this case, 2005-2013).

This analysis was designed to show general patterns, not be a definitive evaluation of the effectiveness of protected areas. A more complete evaluation could control for additional variables (such as slope, elevation, climate, distance to population centers, etc…).

 

 

 

 

 

 

Deforestation Analysis – Results

MAAP_All_ANP_11c_v3_m
Image 11d. Results of deforestation analysis.

Across all protected areas administered nationally, we found that deforestation was significantly lower starting at 2 km within their boundaries compared to outside them (p < 0.05) (see Image 11d). The significance level increased by an order of magnitude between 3 and 5 km. We didn’t detect a significant difference between 1 km within and outside the protected area boundaries.

On average, we found that 0.5% of the area within protected areas experienced forest loss between 2000-2013, while outside the protected areas was nearly 1.2%. In other words, the rate of deforestation outside of protected areas is more than twice of that within them. Furthermore, as mentionned earlier, some forest loss within the protected areas surely comes from natural causes, such as landslides or meandering rivers.

Related Studies

As noted above, this analysis was designed to show general patterns, not be a definitive evaluation of the effectiveness of protected areas. Several other recent studies have pointed out the importance of controlling for additional variables.

In a study focused on the Brazilian Amazon, Pfaff et al (PLOS ONE 2015) found that is important to control for the location of protected areas, which is often in more isolated areas with lower deforestation pressures.

Specifically regarding the Peruvian Amazon, a study by the research organization Resources for the Future (2014) found that “the average protected area reduces forest cover change”. This study rigorously controlled for a number of key variables (such as elevation, slope, climate, and distance to cities), but used older and more limited forest loss and protected areas data.

*This total of 46 protected areas includes: a) all the categories considered part of SINANPE (including Reserved Zones and Regional Conservation Areas) except for Private Conservation Areas, and b) all areas that are totally or partially located in the Amazon basin.

SERNANP Response

In response to this article, SERNANP (the Peruvian protected areas agency) issued this statement:

Actualmente el SERNANP viene realizando una verificación en campo por parte del personal guardaparque de las Áreas Naturales Protegidas durante sus acciones de patrullaje merced a la información de pérdida de bosque proporcionada por el Ministerio del Ambiente, periodo 2013-2014, a fin de determinar si el cambio de la cobertura se debe a causas naturales o antrópicas. Esto podrá complementar el análisis desarrollado por ACCA.

Es importante señalar, que el SERNANP viene aplicando el enfoque ecosistémico en la planificación y gestión de las Áreas Naturales Protegidas, en este sentido desarrolla acciones que permiten evitar la deforestación al interior de estos espacios protegidos, pero a su vez nos proponemos que en su entorno se desarrollen actividades compatibles con la conservación que eviten el fraccionamiento del hábitat y permitan la sostenibilidad de la conservación de las Áreas Naturales Protegidas a futuro.

En este sentido, considerando de vital importancia generar alianzas con las entidades que toman decisiones en el territorio fuera de estos espacios, hemos establecido a nivel nacional un trabajo conjunto con los Gobiernos Regionales a fin de integrar las Áreas Naturales Protegidas dentro de corredores de conservación con otras modalidades de conservación que  se impulsan a través de sus sistemas regionales de conservación. Con ello, se esperaría detener el fraccionamiento de hábitat alrededor de las Áreas Naturales Protegidas, lo que podría conllevar a su insostenibilidad a futuro. Al respecto, es preciso mencionar que los Sistemas Regionales de Conservación cuentan con un espacio de coordinación donde se reúnen las principales instituciones que gestionan territorio y en la cual se discuten las iniciativas de desarrollo social y económico para que se realicen en armonía con la conservación de la biodiversidad del país, el SERNANP forma parte de estos espacios a nivel nacional.

Citation

Finer M, Novoa S (2015) Importance of Protected Areas in the Peruvian Amazon. MAAP: Image #11. Link: https://www.maapprogram.org/2015/08/image-11-protected-areas

Mining News Watch #17

Mining News Watch #17 covers the time period June 10- July 30, 2015

Top Stories 

  • On July 13th, the Peruvian police carried out a major raid in the La Pampa mining zone (Madre de Dios), the first major government operation against illegal mining in eight months.

  • Following the raid, the regional President of Madre de Dios, Luis Otsuka, complained of the inefficiency of the formalization process in Madre de Dios, and how it is damaging the region’s economy.

  • Technical reports released by the Amazon Conservation Association (ACA) and the Conservación Amazónica (ACCA) has found growing deforestation in the Amarakaeri Communal Reserve and Sierra del Divisor.

  • OjoPublico released an investigative report on the foreign financing of illegal mining in South America, including the foreign businesses that help finance illegal gold mining.

Government Action

  • On July 13th, a team of 900 Peruvian police agents destroyed 55 illegal gold mining settlements in the La Pampa mining zone, located in the buffer zone of the Tambopata National Reserve. This was the first major operation against illegal gold mining camps in Madre de Dios in eight months. [1, 2]
  • Two days after the raids, on July 15th, the regional president of Madre de Dios, Luis Otsuka, demanded clear regulations for formalized mining from the national government. He complained of the irregularity with the formalization process, as well as the fact that the boundary line for Madre de Dios also marks the beginning of territory where mining activity is categorically rejected. Otsuka claimed that the national government is unknowingly causing Madre de Dios’s economic axis to come to a halt. [3]
  • In June, the National Police of Peru officially established a new police body of 1,000 agents that will focus on combatting illegal mining and illegal logging in all Peruvian departments. This team led the major operation on July 13th in La Pampa. [4, 5]
  • Further north, police destroyed three mining camps in the region of Amazonas in June. The illegal mining was occurring within an indigenous community territory, and was negatively effecting the riverbeds of the Maranon and Santiago rivers, including exposure to mercury and cyanide. [6]
  • The Environmental Evaluation and Auditing Organization (OEFA) released a series of reports in July with the regional results of the 2014 environmental audits, including one that focused on small-scale mining. The 25 regional governments in Peru were given a score on a scale of 0 to 20 based off of OEFA’s formal and operative standards for mining. OEFA categorizes the results as follows: scores above 14 are good; 11-14 is average; 8 to 11 is low; 5 to 8 is very low; and scores below 5 are critical. There was substantial improvement in Madre de Dios, which was ranked 24th in 2013, but rose to 4th in 2014. During the 2013-2014 year, Madre de Dios established identifications for illegal mining, developed environmental evaluations, and worked with the federal government to monitor mining, all which helped raise its score. [7]

Region

Score 2013

Rank 2013 Score 2014 Rank 2014
Madre de Dios 3.36 #24 9.97 #4
Amazones 5.92 #13 6.72 #16
Loreto 4.42 #23 6.17 #19
Ucayali 5.35 #15 5.28

#23

  • An executive decree from the Ministry of Energy and Mines (MEM) that assigned new fees on gasoline in Madre de Dios has been improved so that it will prevent gasoline from being used for illegal mining without interfering with legal productive sectors of the economy. MEM used information from the National Customs and Tax Administration (SUNAT) to figure out proper gasoline supplies and fees for the logging, forestry, Brazil nut harvesting, and tourism industries. However, businesses in the area are still concerned that the law is not effectively combatting illegal mining because it is currently applied only in the La Pampa mining zone, not all of Madre de Dios. [8]
  • In July, 68 kg of mercury and 2,400 gal of diesel were seized in Madre de Dios. It is believed that the mercury and diesel were going to be used for illegal mining in La Pampa. [9]

Formalization

  • Since June, a team from MEM has been issuing audits for the “saneamiento” registration that will help 40,000 miners finalize the formalization process. Saneamiento lacks a direct translation in English, but implies legal ordering and restructuring of the original complex formalization process. This nationwide audit comes as a result of the approval of the “Saneamiento Strategy for Small and Artisanal Miners,” (la Estrategia de Saneamiento de la Pequeña Minería y de la Minería Artesanal) which streamlines the six step formalization process. The auditing team examines the legal documentation and field sites of informal miners, and if the audit is consistent with the saneamiento requirements, then the subject can continue the formalization process. [10] 
  • With the goal of simplifying and renergizing the formalization process, “Ventanilla Unica,” the website used to help informal miners, is being restructured. Ventanilla Unica has documents, information on the Corrective Environmental Management Instrument, news on informal mining, and resources for other state institutions. [11, 12]

Deforestation

  • ACA and ACCA released a technical report on their MAAP website concerning deforestation from a mining zone in Madre de Dios that has expanded into the Amarakaeri Communal Reserve. Their analysis showed that gold mining deforestation entered the reserve in 2013 and continued expanding in 2014 and 2015. The total gold mining deforestation within the reserve is currently at 11 hectares. [13] The Peruvian National Service of Natural Protected Areas (SERNANP) later confirmed ACA’s report that illegal mining had been the cause of the deforestation. [14]
  • ACA released a technical report on their MAAP site that illustrated the recent expansion of gold mining near Sierra del Divisor in the region of Ucayali. [15]

Other

  • OjoPublico, an online investigative journalism news source, released a report investigating the exportation of gold from illegal mining. The report estimated that 150 tons of gold was illegally smuggled from Peru in 2010, which makes Peru unofficially the second biggest global producer of gold with 330 tons, behind only China. The report released the names of several European and American businesses in the London Bullion Market Association that financially supported the operations, including American companies Northern Texas Refinery and Republic Metals Corporation. [16]
  • Peru established three alliances with Colombia, Ecuador, and Bolivia in hopes of eradicating illegal mining, including sharing ideas for mining formalization, combatting illegal mining, and environmental remediation. Peruvian officials also stated that they were working on establishing an alliance with Brazil. [17]
  • The Association for Research and Integral Development, a private organization with a contract with the National Service for Protected Natural Areas (Sernanp), presented an environmental management project that can help avoid deforestation by using agroforestry to produce cacao. The project would prevent deforestation in 12,000 hectares of forest in the Tambopata National Reserve and Bahuaja Sonene National Park, both located in Madre de Dios. [18]

 

Notes: The ACA Mining News Watch focuses mostly on issues pertaining to the Peruvian Amazon and may not cover issues related to non-Amazonian parts of the country. We would like to credit ProNaturaleza’s “Observatorio Amazonia” as our primary resource for articles related to illegal mining in Peru.

Photo Credit: http://elcomercio.pe/peru/madre-de-dios/operacion-contra-mineria-ilegal-pampa-fotos-noticia-1826310/3

ACA contact for Comments/Questions:  Matt Finer (mfiner@amazonconservation.org)

Citation: DeRycke E, Finer M (2015). Peru Mining News Watch Report #17. Amazon Conservation Association. https://www.maapprogram.org/2015/08/mining-news-watch-17

 

Image #10: Bahuaja Sonene National Park – Increasing Deforestation Within and Around Southern Section (Puno, Peru)

Here, in MAAP #10, we show the results of a deforestation analysis of two sectors of Bahuaja Sonene National Park and its surrounding buffer zone. The Park, which covers an area of more than 1.6 million hectares in the regions of Puno and Madre de Dios in the southern Peruvian Amazon, is an area of high biological diversity.

Specifically, we found increasing deforestation in 1) the buffer zone of the Park’s western section (Loromayo sector) and 2) inside the Park’s southeastern section (Colorado sector). In both cases, we identified shifting cultivation associated with coca cultivation as one of the main drivers of deforestation.

Bahuaja_Sonene_MAAP_10a_v3_e (1)
Image 10a. Deforestation detected in and around Bahuaja Sonene National Park and its buffer zone. Please note that Zooms “A” and “B” are described in more detail below. Data: SERNANP, PNCB, USGS.

Key Results

We highlight two key areas within and around Bahuaja Sonene National Park where deforestation grew substantially between 2013 and 2015:

1) Sector Loromayo, located in the buffer zone immediately outside the western section of the Park (see Zoom A). We estimate that more than 1,000 hectares (ha) were deforested since 2010, peaking in 2014 (331 ha). This expanding deforestation entered the Park in 2014.

2) Sector Colorado, located in the southeastern section of the Park (see Zoom B). We estimate, between 2001 to 2014, the deforestation of over 530 hectares inside the Park and over 1,170 hectares in the surrounding buffer zone. As in Loromayo, there was a notable increase in deforestation starting in 2010, with the peak occurring in 2014.

In both sectors, Loromayo and Colorado, we identified that one of the main drivers of deforestation is coca cultivation.

Description of Data

In the following maps:

Any variation of green in the satellite imagery indicates areas of forest cover.

Yellow (2000-2004), orange (2005-2008), red (2009-2012), and purple (2013) indicate areas that were deforested between 2000 and 2013 according to data from the National Program of Forest Conservation for the Mitigation of Climate Change (PNCB) of the Ministry of the Environment of Peru.

The colors pink (2014) and turquoise (2015) indicate areas that were deforested in the last two years based on our analysis of Landsat imagery using CLASlite forest monitoring software.

Zoom A: Loromayo River (western buffer zone)

Bahuaja_Sonene_MAAP_10c_v3_e
Image 10b. The expansion of deforestation along the Loromayo river in the buffer zone to the west of Bahuaja Sonene National Park. Data: SERNANP, USGS, IBC, PNCB.

As shown in Figure 10b, we identified a striking pattern of deforestation in the sector Loromayo, located between the Malinowski and Chaspa rivers in the Park’s western buffer zone in the department of Puno. Note that the deforestation entered the Park in 2014.

In this area, we documented the deforestation of 1,005 hectares since 2010. This deforestation peaked in 2014, with 331 hectares, including 1.8 hectares within the Park. Not much data is yet available for 2015.

Please note that we previously reported on the advance of gold mining deforestation seen in Image 10b along the Malinowski River in MAAP #5.

Sector Loromayo: Shifting Agriculture that includes Coca Cultivation

Bahuaja_Sonene_MAAP_10g_v3_m_e
Image 10c. Coca density data (upper panel) in relation to a recent high resolution satellite image of the area (lower panel). Data: UNODC 2014, SERNANP, Worldview-2 from Digital Globe (NextView).

In the recent UNODC (United Nations Office on Drugs and Crime) report “Monitoreo de Cultivos de Coca 2014” [Coca Crop Monitoring 2014], it was reported that the Loromayo sector (coca zone San Gabán) has a medium to high density of coca cultivation, with a recent increase of 5.9% since 2013. Therefore, we conculde that coca cultivation is one of the major drivers of the observed deforestation.

Image 10c displays the most recent UNODC coca density data (upper panel) in relation to a recent high resolution satellite image of the area (lower panel). Deforestation is rapidly expanding in the vicinity of the Park boundary. Unfortunately, in this image, a few clouds cover the small area where the deforestation recently entered Park.

Zoom B: Sector Colorado (Southeastern section of Park)

Bahuaja_Sonene_MAAP_10b_v2_e
Image 10d. The expansion of deforestation in the Colorado sector of Bahuaja Sonene National Park. Data: SERNANP, USGS, IBC, PNCB.

As seen in Figure 10d, deforestation is well established and increasing in the sector Colorado, located in the southeast section of Bahuaja Sonene National Park, with the Region of Puno. Our analysis in this area extended from the upper Tambopata River to the Azata river.

We document the deforestation, since 2001, of 538 ha inside the Park and an additional 1,172 ha within the surrounding buffer zone. Similar to the sector Loromayo sector, there was a marked increase in deforestation since 2010, with a peak in 2014. More than half of the deforestation (53%, 287 ha) occurred since 2010, with a maximum of 81 ha in 2014. Not much data is yet available for 2015.

Sector Colorado: Presence of Coca Cultivation Inside the Park

Bahuaja_Sonene_MAAP_10h_v3_m_e
Image 10e. Coca density data (upper panel) in relation to a recent high resolution satellite image of the area (lower panel). Data: UNODC 2014, SERNANP, SPOT6 from Airbus.

According to a recent report by the Wildlife Conservation Society (WCS), the deforestation in the Colorado sector was a result of the advance of agriculture and livestock cultivation in the area. Moreover, according to the recent UNODC  report noted above, this sector (coca zone Inambari-Tambopata) also has a high density of coca, with 108 ha on the interior of Bahuaja Sonene National Park and 1,610 ha in the buffer zone, likely making it one of the major drivers of the observed deforestation.

Image 10e displays the UNODC coca density data (upper panel) in relation to a recent high resolution satellite image of the area (lower panel).

SERNANP Response

In response to this article, SERNANP (the Peruvian protected areas agency) issued this statement:

“El sector denominado como Colorado es sector ubicado dentro del Parque Nacional Bahuaja Sonene, que actualmente se encuentra zonificado como Zona de Recuperación;  dicha zonificación se otorga a aquellas zonas que por actividades antrópicas han sido afectadas y que necesitan estudios complementarios para determinar su zonificación definitiva.”

[The sector named ‘Colorado’ is a sector located within the Bahuaja Sonene National Park, which currently is zoned as a ‘Restoration Zone.’  Said zoning is extended to those zones which have been affected due to anthropic activities and require supplementary studies so as to determine their definitive zoning designation.]

Debemos señalar que en este sector se han detectado severas plagas que afectan los cultivos de frutos como la naranja y café, desencadenando que la población asentada en la zona de amortiguamiento del Parque se vean forzada a reemplazar estas plantaciones por el cultivo de coca en algunos casos.

[We should note that severe pests have been detected in this sector which affect the cultivation of fruit such as oranges and coffee; this has lead the population settled in the park’s buffer zone to have no choice but to replace these crops with the cultivation of coca in some cases.]

Esta situación ha sido identificada y advertida oportunamente por el jefe del Parque Nacional Bahuaja Sonene a las entidades pertinentes para iniciar su erradicación; no obstante, el SERNANP también ha emprendido un trabajo conjunto con las autoridades locales y el comité de gestión del área natural protegida para combatir esta amenaza, lo cual figura en el Plan Maestro 2015-2019 del área en mención. Ahí se contemplan estrategias  como la construcción de un puesto de control y vigilancia para monitorear permanentemente esta situación.

[The head of the Bahuaja Sonene National Park has identified and issued a warning about this situation in a timely manner to the relevant entities so as to initiate its eradication work; notwithstanding, SERNANP has also undertaken joint work with local authorities and the management committee of the natural protected area to combat this threat, which figures in the 2015-2019 Master Plan of the area in question.  The latter contains strategies such as the construction of a checkpoint and guard post for permanently monitoring this situation.]

Asimismo, se vienen promoviendo mesas de diálogo y el desarrollo de actividades económicas sostenibles que reemplacen los cultivos ilícitos y que garanticen la calidad de vida de la población de Colorado.”

[Likewise, dialogue roundtables and the development of sustainable economic activities have been promoted that can replace the illicit crops and guarantee quality of life for the population of Colorado.]

Citation

Finer M, Novoa S (2015) Bahuaja Sonene National Park – Increasing Deforestation Within and Around the Southern Section (Puno, Peru). MAAP: Image #10. Link: https://www.maapprogram.org/2015/07/image-10-bahuaja/

References

UNODC. Monitoreo de cultivos ilícitos Perú 2014. p 29. (Lima, 2015).