MAAP #38: United Cacao deforestation in area classified as “Forest Production”

The Peruvian Ministry of Agriculture and Irrigation (MINAGRI) recently issued a resolution approving the Update of the Soil and Optimum Land Use Suitability Studies for Areas in the Loreto Region. It is important to emphasize that “Optimum Land Use” (Capacidad de Uso Mayor in Spanish)  is not determined by forest cover, but the quantitative interpretation of the soil, climate, and topography.

This new resolution represents an important advance in forest management in Peru because, according to both the previous1 and current2 Forestry Law, if the Optimum Land Use of a particular area is classified as Forest Production or Protection, it is illegal to change the land use to agriculture and cause deforestation. Thus, it is only possible to request land use change if the area has been classified as “Agriculture” (Optimum Land Use Annual Crop, Permanent Crop, or Pasture).3

Here, we analyze the spatial data corresponding to the new resolution. In Image 38a, we show that 92.6% (2,200 hectares) of the deforestation4 associated with the United Cacao project occurred on areas with an Optimum Land Use classification of Forest Production5. This classification “groups the lands in which climatic, terrain and soil conditions are not favorable for intensive cultivation, permanent crops, nor pastures, but for the production of timber species.”

Imagen 38a. Datos: MINAGRI
Image 38a. Data: MINAGRI 2016. Red lines indicate areas deforested by United Cacao between 2013 and 2016. Green indicates areas with Optimum Land Use classification of Forest Production, while the yellows indicate areas with Optimum Land Use classification of Agriculture.

In addition, 3.8% of the deforestation occurred in areas with an Optimum Land Use classification of Pasture/Forestry, while the remaining 3.6% occurred in areas with classification of Pasture. However, it is important to emphasize that even in these areas with an agricultural classification, our analysis of satellite imagery found that they were actually covered with primary forest (see Image 38b).

In conclusion, the vast majority of deforestation caused by United Cacao occurred in areas classified as optimally suited for forest production, where changes in land-use and associated deforestation are not permitted.

Imagen 38b. Datos: Landsat/NASA/USGS
Imagen 38b. Data: Landsat/NASA/USGS

Notes

1Ley 27308 Articulo 7. Decreto Supremo 014-2001-AG, Reglamento de la Ley Forestal y de Fauna Silvestre, Art. 36.

2 LEY FORESTAL Y DE FAUNA SILVESTRE (LEY Nº 29763), Artículo 37

3 Decreto Legislativo No. 653, Ley de Promocion de las Inversiones en el Sector Agrario (1991)

4 See MAAP #35 for more information regarding this deforestation.

Specifically, this area is classified as F2s: Tierras Aptas para Producción Forestal (Símbolo F), Clase – Calidad Agrológica Media (Símbolo F2),  Subclase – Limitación por Suelo (Símbolo “s”)

Citation

Finer M, Novoa S, Cruz C (2016) United Cacao deforestation in area classified as “Forest Production.” MAAP: 38.

MAAP #37: Deforestation Hotspot in the central Peruvian Amazon driven by Cattle Pasture

Image 36a. Data: UMD/GLAD
Image 37a. Data: UMD/GLAD

In the previous MAAP #26, we presented a map of Deforestation Hotspots in the Peruvian Amazon during 2015*. This analysis showed that the highest concentration of deforestation is in the central Peruvian Amazon.

Here in MAAP #37, we focus on this region, as indicated by Image 37a. Specifically, we analyze the hotspots shown in Insets C and D, located in the eastern section of the department of Huanuco.

(Note that we previously described the hotspots indicated by Insets A and B, located in northwest Ucayali department, in MAAP #26).

For 2015, we calculated a total deforestation of 7,930 hectares (19,595 acres) in the area indicated by these two insets. The main deforestation driver is likely cattle pasture (see below). It is worth noting that the vast majority of the deforested area (87%) is outside of areas zoned for agriculture use.

We calculated an additional deforestation of 16,590 hectares (41,000 acres) in 2013 and 2014. Again, the vast majority of the forest loss appears to be outside areas zoned for agriculture use.

 

 

 

 

Deforestation Driver: Cattle Pasture

The predominant land use in the area is cattle pasture, so that is likely the leading driver of the documented deforestation.

We took a sample (1,500 hectares) of areas that were deforested in 2014, and found that 76% (1,140 hectares) were converted to cattle pasture in 2015. All sample areas were greater than 5 hectares and had available high-resolution imagery from September 2015. Based on an analysis of the imagery, we estimate that a similar amount of area was being cleared for pasture in 2015.

Below, we show a series of high-resolution images of this deforestation (click each image to enlarge).

Inset C Hotspot

Huanuco_zoomC_v5
Image 37b. Data: PNCB/MINAM, UMD/GLAD, MTC

Image 37b shows a detailed view of the deforestation inside the area indicated by Inset C.

In this area, we documented deforestation of 5,050 hectares in 2015. Of this total, 46% of the deforestation events were small-scale (<5 ha), 43% were medium-scale (5-50 ha), and 12% were large-scale (>50 ha).

We calculated an additional deforestation 0f 9,940 hectares in 2013 and 2014.

In Image 37c we show, in high resolution, an example of the recent deforestation in this area between August 2014 (left panel) and September 2015 (right panel). See Inset C1 for context.

Huanuco_C1_v5_DG
Image 37c. Data: WorldView of Digital Globe (NextView).

Inset D Hotspot

Huanuco_zoomD_v5
Image 37d. Data: PNCB/MINAM, UMD/GLAD, MTC

Image 37d shows a detailed view of the deforestation inside the area indicated by Inset D.

In this area, we documented deforestation of 2,883 hectares in 2015. Of this total, 44% of the deforestation events were small-scale (<5 ha), 51% were medium-scale (5-50 ha), and 6% were large-scale (>50 ha).

We calculated an additional deforestation of 6,650 hectares in 2013 and 2014.

In Images 37e – 37f, we show, in high resolution, two examples of the recent deforestation in this area between June (left panel) and September (right panel) of 2015. See Insets D1 and D2 for context.

Huanuco_D1_v3_DG
Image 37e. Data: WorldView of Digital Globe (NextView).
Huanuco_D2_v2_DG
Image 37f. Data: WorldView of Digital Globe (NextView).

References

* Based on the data from the GLAD alerts, produced by the University of Maryland, Google, and Global Forest Watch. http://www.globalforestwatch.org/map/5/-9.31/-75.01/PER/grayscale/umd_as_it_happens

*Hansen, M.C., A. Krylov, A. Tyukavina, P.V. Potapov, S. Turubanova, B. Zutta, S. Ifo, B. Margono, F. Stolle, and R. Moore. Humid tropical forest disturbance alerts using Landsat data. Environ. Res. Lett. 11: 034008.


Citation

Finer M, Novoa S, Cruz C, Peña N (2016) Deforestation Hotspot in the central Peruvian Amazon. MAAP: 37.

MAAP #36: New Gold Mining Frontier in the Northern Peruvian Amazon

In several previous MAAP articles, we have detailed gold mining deforestation in the southern Peruvian Amazon. Here, we provide evidence of the first known case of gold mining deforestation in northern Peru.

A recent news article published by the Peruvian organization DAR reported that gold mining activity continues to increase in the Santiago River (see Image 36a), located in the Amazonas region of the northern Peruvian Amazon. The article also mentions that this gold mining activity is no longer restricted to the river, but is now entering the forest. There are mining concessions in the area, but according to a recent article published in The Guardian, the miners are not operating legally with permission from the concessionaire.

Here, we show the first satellite images that confirm that the mining activity is indeed causing deforestation along the Santiago River (see below). Click each image to enlarge.

Imagen Xa. Crédito: DAR
Image 36a. Credit: DAR, April 2016

Satellite Images of Gold Mining Deforestation in Northern Peru

Image 36b shows a high-resolution image of the newly deforested area due to mining activity along the Santiago River (see yellow circle). The total forest loss to date is 8 hectares (20 acres).

Imagen Xa. Datos: Planet Labs
Image 36b. Data: Planet Labs

Image 36c shows that the deforestation occurred between August 2014 (left panel) and August 2015 (right panel).

Image 35c. Data: USGS/NASA
Image 36c. Data: USGS/NASA

Citation

Finer M, Novoa S (2016) Gold Mining Deforestation in the Northern Peruvian Amazon. MAAP: 36.

MAAP #35: Confirming Amazon Deforestation by United Cacao in 2013 [High Res View]

To date, we have published 4 MAAP articles* tracking deforestation by the company United Cacao in the northern Peruvian Amazon (outside the town of Tamshiyacu in the Loreto region). In these articles, based on analysis of satellite imagery, we have documented the deforestation of 2,380 hectares (5,880 acres) related to this project.

The company, however, continues to deny this deforestation**. In general, their main response seems to be that the land in question had been deforested for previous agricultural projects prior to their arrival in 2013.

Here in MAAP #35, we show definitively that this assertion simply does not match the satellite evidence. This article is based on analysis of recently-acquired satellite images from early 2013, the time period that the cacao project began. These images show, in extremely high resolution, the large-scale deforestation of primary forest in the project area between March and September 2013.*** Click each image to enlarge.

It is important to resolve the deforestation-related issues because the company has plans to expand its agricultural land bank in the coming years. Please see this recent statement from the Peruvian Forestry Service (SERFOR) for details on the legal aspect of this case.

As a reference, at the end of the article there is a graphic (Image 35l) illustrating the difference (as seen in high-resolution imagery) between primary forest, secondary vegetation, agricultural areas, and deforested areas.

New Evidence of Large-Scale Deforestation in 2013

We recently obtained high-resolution satellite imagery from March 25, 2013, immediately before the beginning of the deforestation for the cacao project. Image 35a shows the same exact project area between March (left panel) and September (right panel) 2013. In March, the project area is predominantly covered with primary forest*** and contains only a few scattered patches of previously disturbed land. In contrast, in September, the project area is clearly undergoing a large-scale deforestation event (1,100 hectares at that time).

tamshiyacu2
Image 35a. Data: Airbus, Digital Globe (Nextview)

Zoom A

In the following series of images, we show zooms of the areas indicated by Insets A-E in Image 35a. Each image shows the same exact area within the cacao project between March (left panel) and September (right panel) 2013. In all images, one can clearly see intact forest in March followed by large-scale deforestation in September.

Image 35b. Data: Airbus, Digital Globe (Nextview)
Image 35c. Data: Airbus, Digital Globe (Nextview)

Zoom B

tamsh_zoomB
Image 35d. Data: Airbus, Digital Globe (Nextview)
tamsh_zoomB1
Image 35e. Data: Airbus, Digital Globe (Nextview)

Zoom C

tamsh_zoomC
Image 35f. Data: Airbus, Digital Globe (Nextview)
tamsh_zoomC1
Image 35g. Data: Airbus, Digital Globe (Nextview)

Zoom D

tamsh_zoomD
Image 35h. Data: Airbus, Digital Globe (Nextview)
tamsh_zoomD1
Image 35i. Data: Airbus, Digital Globe (Nextview)

Zoom E

tamsh_zoomE
Image 35j. Data: Airbus, Digital Globe (Nextview)
tamsh_zoomE1
Image 35k. Data: Airbus, Digital Globe (Nextview)

Reference Graphic

Finally, for reference, Image 35l illustrates the difference (as seen in high-resolution imagery) between primary forest, secondary vegetation, agricultural areas, and deforested areas.

Imagen Xl. Datos: Worldview (NextView)
Image 35l. Data: Worldview (NextView)

References

*MAAP #27, MAAP #13, MAAP #9, MAAP #2

**See articles in Directors Talk, La Region, y The Guardian

***see MAAP #9 for details on our time-series analysis dating back to 1985 that revealed that the vast majority of the project area is primary forest

Citation

Finer M, Cruz C, Novoa S (2016) Confirming Amazon Deforestation by United Cacao in 2013 [High Res View].  MAAP: 35.

MAAP #33: Illegal Gold Mining Alters Course of Malinowski River (border of Tambopata National Reserve)

In MAAP #30, we described the illegal gold mining invasion of Tambopata National Reserve, an important protected area in the southern Peruvian Amazon (department of Madre de Dios). Here in MAAP #33, we show that illegal gold mining is also altering the course of the Malinowski River, which forms the natural boundary of the Reserve. Image 33a shows the two areas where we have documented a total artificial deviation (cutting) of 4.4 km (2.7 miles) of the river (see details below).

Image 33a. Data: Planet Labs, SERNANP
Image 33a. Data: Planet Labs, SERNANP

Zoom A: A Recent Deviation of the Malinowski River

Image 33b shows the final stage of the deviation of the Malinowski River between March 31 (left panel) and May 3 (right panel) of this year in the area indicated by Inset A in Image 33a. The new flow of the river is clearly seen in the right panel, cutting a 1.7 km stretch of the previous course.

Image 33b. Data: Planet Labs, Digital Globe (Nextview)
Image 33b. Data: Planet Labs, Digital Globe (Nextview)

Image 33c shows with greater precision how the Malinowski river was diverted in this area between April and May 2016. The red arrow indicates the exact same place across time in the three images.

Image 33c. Data: Digital Globe (Nextview)
Image 33c. Data: Digital Globe (Nextview)

Zoom B: An Earlier Deviation of the Malinowski River

In February 2016, Peruvian specialists presented how mining activity had recently changed the natural course of the Malinowski river in the area indicated in Inset B*. Image 33d shows the progressive change: from the increase in mining activity along the normal course of the river in June 2013 (left panel), to the new stretch of riverbed in June 2015 (center panel), and finally to the expansion of mining activity along the previous course (right panel). The red dot indicates the same place over time in the three images. A total of 2.7 km was cut from the previous river course.

Image 33d. Data: Digital Globe (Nextview), Planet Labs
Image 33d. Data: Digital Globe (Nextview), Planet Labs

Ecological Impacts

According to Dr. Carlos Cañas**, coordinator of the Amazon Waters Initiative for Wildlife Conservation Society in Peru, the deviation of the natural course of the Malinowski River will have significant ecological impacts, including:

  • Although the Malinowski River’s course has natural movement, the changes documented in MAAP #33 definitely represent an artificial alteration caused by mining activity.
  • These artificial changes are altering the course of the Malinowski from one that is “narrow and defined” to one that is “wide and scattered.” This change impacts the river’s flood patterns by changing the intensity, timing, and frequency of flooding along the river’s banks. This implies an effect on the migratory behavior of many species of fish downstream, which receive and interpret signals from the river to guide vital functions like feeding and reproduction.
  • The river’s new wider course also causes the velocity of water downstream to decrease, which will lead to increased levels of sediment in the discharge zone of the largest tributary, the Tambopata. Given the nature of the Tambopata, this could provide the almost-permanent damming of the Malinowski, as greater volume of the Tambopata means more sedimentation at the mouth of the river. Among other things, this could hinder the entry of fish to their feeding zones.
  • As seen in Image 33d, fish access to certain areas will be interrupted by the blockade and closure of channels. Also, the connection between the floodable forest and the river channel is completely altered, if not interrupted, in this section of the river. Many fish species that eat fruit or vegetation from the adjacent forest depend on this seasonal connection for food.
  • The Malinowski River, since it is a tributary of the Tambopata River, has natural áreas that are crucial to the reproduction of many local species. Its tributary streams represent habitats that differ from the main river and harbor an incredible variety of fish and invertebrates that contribute to the biodiversity of the river basin. These streams have little sediment, and are thus highly transparent. Mining will destroy or drastically alter these environments, severely impacting this biodiversity.

Referencias

*Villa L., Campos L. G., Pino I. M. (01 de febrero de 2016). Primer Sistema de Alerta Temprana de Geoinformación (SAT-GI) para Áreas Naturales Protegidas del Perú: Reserva Nacional Tambopata y el Ámbito de Madre de Dios del Parque Nacional Bahuaja Sonene. Reporte Nº 001-2016.

** Cañas CM, Waylen PR (2011) Modelling production of migratory catfish larvae (Pimelodidae) on the basis of regional hydroclimatology features of the Madre de Dios Basin in southeastern Peru. Hydrol. Process. DOI: 10.1002/hyp.8192.

**Cañas CM, Pine WE (2011) DOCUMENTATION OF THE TEMPORAL AND SPATIAL PATTERNS OF PIMELODIDAE CATFISH SPAWNING AND LARVAE DISPERSION IN THE MADRE DE DIOS RIVER
(PERU): INSIGHTS FOR CONSERVATION IN THE ANDEAN-AMAZON HEADWATERS. River Res. Applic. 27: 602–611.

Citation

Finer M, Novoa S (2016)  Illegal Gold Mining Alters the Course of the Malinowski River (border of Tambopata National Reserve). MAAP: 33.

MAAP #32: Large-scale vs. Small-scale Deforestation in the Peruvian Amazon

Graph 32a. Data: PNCB/MINAM, UMD/GLAD
Graph 32a. Data: PNCB/MINAM, UMD/GLAD

In the previous MAAP #25 and MAAP #26, we illustrated deforestation hotspots in the Peruvian Amazon for the periods 2012-2014 and 2015*, respectively. Here in MAAP #32, we present a complementary analysis based on the size of deforestation events.

Graph 32a shows the comparative results of deforestation patterns between 2013 and 2015, indicating that:
Small-scale (< 5 hectares) accounted for the vast majority of deforestation events (70-80%) each year.
Medium-scale (5-50 hectares) accounted for approximately 20% of the deforestation events each year.
Large-scale (> 50 hectares) deforestation was variable. In 2013, the year with the most activity of new cacao and oil palm plantations, it accounted for 8% of the deforestation events. In 2015 it was only 1%.

In summary, small- and medium-scale deforestation events represent more than 90% of the total and a constant threat, while large-scale deforestation events represents a latent threat. As described below, large-scale projects can quickly cause massive deforestation events, and should therefore remain a high priority.

*We have increased our deforestation estimate for 2015 to 163,238 hectares (403,370 acres), the second highest on record (behind only 2014). This estimate is based on GLAD alerts, produced by University of Maryland, Google, and Global Forest Watch.

Base Map

Image 32a shows, in graphic form, the deforestation patterns described above for 2013 (left panel) and 2015 (right panel). Further below, we show zooms for three key zones in the north, central, and south, respectively.

Categ_13_15_v1_en
Image 32a. Data: PNCB/MINAM, UMD/GLAD

Northern Peruvian Amazon

Image 32b shows a zoom of the northern Peruvian Amazon for 2013 (left panel) and 2015 (right panel). In general, there is a pattern of small-scale deforestation along the rivers of Loreto. Additionally, in 2013, there were large-scale deforestation events for a cacao project located to the southeast of the city of Iquitos (see MAAP #27 for more details) and for oil palm plantations along the border of Loreto and San Martin regions (see MAAP #16 for more details). In 2015, the expansion of deforestation continued in these areas, but at a medium-scale.

Categ_13_15_n_v1_en
Image 32b. Data: PNCB/MINAM, UMD/GLAD

Central Peruvian Amazon

Image 32c shows a zoom of the central Peruvian Amazon for 2013 (left panel) and 2015 (right panel). In general, there is a concentration of small- and medium-scale deforestation between northwest Ucayali and southeast Huánuco. Additionally, in 2013, there is large-scale deforestation for two new oil palm plantations located northeast of the city of Pucallpa (see MAAP #4 for more details).

Categ_13_15_c_v1_en
Image 32c. Data: PNCB/MINAM, UMD/GLAD

Southern Peruvian Amazon

Image 32d shows a zoom of the southern Peruvian Amazon for 2013 (left panel) and 2015 (right panel). In general, there is a pattern of small- and medium-scale deforestation along the Interoceanic highway in Madre de Dios. Additionally, there is the persistence of large-scale deforestation in southern Madre de Dios related to illegal gold mining (see MAAP #12 for more details).

Categ_13_15_s_v1_en
Image 32d. Data: PNCB/MINAM, UMD/GLAD

Citation

Finer M, Novoa S (2016) Large-scale vs. Small-scale Deforestation in the Peruvian Amazon. MAAP: 32.

MAAP #31: Deforestation Continues Expansion in La Pampa (buffer zone of Tambopata National Reserve)

Illegal gold mining deforestation continues to expand in La Pampa, an area located in the buffer zone of Tambopata National Reserve in the Madre de Dios region. Here, we present a series of high-resolution (0.5 m) images that clearly illustrate this expansion. Image 31a shows the large, expanding mass of deforestation in La Pampa (as of November 2015) in relation to the Tambopata National Reserve and its buffer zone. Insets A and B indicate the high-resolution zoom areas, where further below we show the rapid deforestation of 76 hectares (188 acres) between November 2015 and April 2016.

Capture_main
Image 31a. Data: WorldView-2 of Digital Globe (NextView).

Zoom A: Rapid Advance of Deforestation

Image 31b shows the expansion of deforestation (28 hectares) between November 2015 (left panel) and April 2016 (right panel) in the eastern section of La Pampa. The red dot indicates the exact same point in both images across time.

DGapril_ZoomA_english_v2
Image 31b. Data: WorldView-2 of Digital Globe (NextView).

Zoom B: Formation of a Large Camp

Image 31c shows the formation of a large mining camp between November 2015 (left panel) and April 2016 (right panel) in the eastern section La Pampa. The red dot indicates the exact same point in both images across time. The image also shows the deforestation of 48 hectares around the camp.

DGapril_ZoomB_english_v2
Image 31c. Data: WorldView-2 of Digital Globe (NextView).

Citation

Finer M, Olexy T (2016) Deforestation Continues Expansion in La Pampa (buffer zone of Tambopata National Reserve). MAAP: 31.

 

MAAP #30: Gold Mining Invasion of Tambopata National Reserve Intensifies

As described previously in MAAP #21, the illegal gold mining invasion of the Tambopata National Reserve began in late 2015. Here in  MAAP #30, we confirm that this invasion continues to intensify in 2016.

Image 30a shows the invasion zone, where we document that the illegal mining is advancing on seven fronts within the northwest section of the reserve and has thus far directly caused the deforestation of 130 hectares (320 acres) since September 2015. Below, we show high-resolution zooms of fronts 1-5 (Inset A) and a major mining camp recently established just outside of the Reserve (Inset B).

Imagen 30a. Datos: Planet Labs, SERNANP
Image 30a. Data: Planet Labs, SERNANP

Invasion of Tambopata: Fronts 1-5

Image 30b shows the rapid expansion of deforestation in 5 of the fronts inside the Reserve between the end of January (left panel) and March (right panel) of 2016. This image corresponds to Inset A in Image 30a. Further below, Images 30c and 30d show high-resolution zooms of these 5 fronts.

Image 30b. Data: Planet Labs, SERNANP
Image 30b. Data: Planet Labs, SERNANP

Zoom of Fronts 1 & 2

Image 30c shows a zoom of deforestation fronts 1 and 2 between January (left panel) and March (right panel) of 2016.

Image 30c. Data: Planet Labs, SERNANP
Image 30c. Data: Planet Labs, SERNANP

Zoom of Fronts 3, 4, & 5

Image 30d shows a zoom of fronts 3, 4, and 5 between January (left panel) and March (right panel) of 2016.

Image 30d. Data: Planet Labs, SERNANP
Image 30d. Data: Planet Labs, SERNANP

Major Mining Camp Adjacent to Tambopata Reserve

Image 30e shows, in high-resolution, the establishment of a major mining camp in front of the invaded section of the Reserve (and within the Reserve’s official buffer zone). This Image corresponds to Inset B in Image 30a.

Image 30e. Data: WorldView-2 de Digital Globe (NextView).
Image 30e. Data: WorldView-2 de Digital Globe (NextView).

Using Radar to Confirm Invasion Continues

In early 2016, the Peruvian government led two major interventions (on January 21 and February 23, respectively) against the illegal miners operating in the interior of the Reserve. However, Image 30f shows in red the continued advance of deforestation (44 hectares) between March 1 (left panel) and March 25 (right panel). In other words, using radar technology (which can pierce through cloud-cover) we can confirm that deforestation continued to advance after the government interventions.

Imagen Xd. Datos: Sentinel-1, SERNANP
Image 30f. Data: Sentinel-1, SERNANP

Finer M, Novoa S, Olexy T (2016) Invasion of Tambopata National Reserve Intensifies. MAAP: 30.

MAAP #29: Construction of New Road between Manu National Park and Amarakaeri Communal Reserve (Madre de Dios)

Here in MAAP #29, we describe the Nuevo Eden-Boca Manu-Boca Colorado road project in the southern Peruvian Amazon (Madre de Dios region). The objective of this article is to show the current state of construction and quantify the direct and indirect deforestation caused thus far by the road. This is a controversial road project because it cuts through the buffer zones of two important protected areas, the Amarakaeri Communal Reserve and Manu National Park*.

MAAP_Manu_a_m_v1_en
Image 29a. Data: SERNANP, USGS, MINAGRI, IBC, CLASlite, PNCB/MINAM, Hansen/UMD/Google/USGS/NASA, SPOT

Image 29a shows the general context of the area between Amarakaeri  and Manu where the road is being constructed. The yellow line indicates the section of road built in 2015 (11.6 km) between the towns of New Eden and Shipetiari (see right panel for high-resolution image of this construction). The red line indicates the new section under construction thus far in 2016 (21.8 km). Thus, in total, we have documented the construction of 33.4 km of road within the Amarakaeri Communal Reserve buffer zone. Finally, the pink line indicates the future road section planned to Boca Manu and then to Boca Colorado.

Road Construction in 2015

Image 29b shows a series of satellite images (Landsat) that illustrate the rapid road construction during 2015. The first two panels show the construction of 11.6 km between February (left panel) and October (central panel) 2015. The yellow arrows in the central panel indicate the direct deforestation (20 hectares) associated with construction of the route. The yellow circles in the right panel indicate the indirect (secondary) deforestation associated with the road (12 hectares). Thus, in total, we have documented the deforestation of 32 hectares (or 79 acres) associated with the road as of mid-March 2016.

MAAP_Manu_c_m_v1_en
Image 29b. Data: NASA/USGS.

New Road Construction in 2016

Image 29c shows the continued road construction (2.9 km) between January and mid-March 2016 (see orange arrows in the left panel). Moreover, using high-resolution imagery provided by Planet Labs, the right panel shows a new path (see red arrows) that is likely the leading edge of the current road construction. This path now extends an additional 19 km in the direction of Boca Manu (see Image 29d).

MAAP_Manu_e_m_v1_en
Image 29c. Data: NASA/USGS, Planet Labs
Imagen Xd. Datos: USGS
Image 29d. Data: NASA/USGS

References

*MINAM (2016) MINAM está en contra de predictamen que permitiría la construcción de la carretera en zona de amortiguamiento del Manu y de Amarakaeri. http://www.minam.gob.pe/perucrecimiento/2016/02/29/minam-esta-en-contra-de-predictamen-que-permitiria-la-construccion-de-la-carretera-en-zona-de-amortiguamiento-del-manu-y-de-amarakaeri/

MINAM (2015) MINAM y SERNANP manifiestan preocupación por aprobación de ley que declara de interés nacional carretera en zona de amortiguamiento del Manu y Amarakaeri. http://www.minam.gob.pe/notas-de-prensa/minam-y-sernanp-manifiestan-preocupacion-por-aprobacion-de-ley-que-declara-de-interes-nacional-carretera-en-zona-de-amortiguamiento-del-manu-y-amarakaeri/

Citation

Finer M, Novoa S, Olexy T (2016) Construction of a New Highway between Manu National Park and Amarakaeri Communal Reserve (Madre de Dios), 2016. MAAP: 29.

MAAP #28: New Deforestation Hotspot along Interoceanic Highway in Southern Peruvian Amazon (Madre de Dios)

We have previously detailed the extensive illegal gold mining problem in the southern Peruvian Amazon (Madre de Dios region), but here in MAAP #28 we detail the emergence of another deforestation hotspot in the region. Image 28a shows the intensification of this hotspot, located along the newly paved Interoceanic highway around the town of Iberia (see Inset F), between 2012-14 (left panel) and 2015 (right panel). Note that the gold mining hotspot, indicated by Inset E, remained consistently high among the two time frames.

Image 28a. UMD/GLAD, PNCB/MINAM
Image 28a. UMD/GLAD, PNCB/MINAM

2015 Deforestation Hotspot Base Map

Image 28 b. UMD/GLAD
Image 28 b. UMD/GLAD

This analysis builds off the previous MAAP #26, where we presented an initial map of “Deforestation hotspots in the Peruvian Amazon in 2015,” based on an analysis of data from the new GLAD* alerts.

Image 28b shows an updated version of the 2015 Peruvian Amazon deforestation hotspots map. Inset F shows the new hotspot featured in this article (see details below).

Note about the Hotspots: Insets A and B indicate two hotspots in the Ucayali region – see MAAP #26 for more detail. Insets C and D indicate two hotspots in Huánuco that we are currently analyzing. Inset E indicates the illegal gold mining zone known as La Pampa, described in various MAAP articles (for example, see MAAP #12). Inset F shows the area of interest in this article.

 

 

 

 

 

 

 

 

 

New Deforestation Front

Image 28c.
Image 28c. PNCB/MINAM, Hansen/UMD/Google/USGS/NASA, UMD/GLAD, MTC, MINAGRI

Image 28c shows detailed information about the deforestation surrounding the town of Iberia in northeast Madre de Dios (see Inset F in Image 28a for context).

Note the extensive deforestation in both 2014 and 2015 along both sides of the Interoceanic highway (1,830 hectares, or 4,522 acres).

Also note that much of the deforestation is an agglomeration of small-scale patches and occurs within forestry concessions (timber and rubber harvesting).

Insets F1 and F2 show the zooms described in greater detail below.

 

 

 

 

 

 

Zoom F1

Image 28d compares two satellite images of the area indicated in Inset F1 (see Image 28c for context) between September 2013 (left panel) and January 2016 (right panel). Note the large increase in newly deforested areas for what appears to be small-scale agricultural inside a timber concession.

Image 28d. Data: USGS, Planet Labs
Image 28d. Data: NASA/USGS, Planet Labs, PNCB/MINAM, UMD/GLAD

Zoom F2

Image 28e compares satellite images of the area indicated in Inset F2 (see Image 28c for context) between September 2013 (left panel) and December 2015 (right panel). Note the large increase in newly deforested areas for what appears to be small-scale agricultural within a rubber concession.

Image 28e. Data: USGS, PNCB/MINAM, UMD/GLAD
Image 28e. Data: NASA/USGS.

References

* Produced by the University of Maryland, Google, and WRI’s Global Forest Watch. http://www.globalforestwatch.org/map/5/-9.31/-75.01/PER/grayscale/umd_as_it_happens

*Hansen, M.C., A. Krylov, A. Tyukavina, P.V. Potapov, S. Turubanova, B. Zutta, S. Ifo, B. Margono, F. Stolle, and R. Moore. Humid tropical forest disturbance alerts using Landsat data. Environ. Res. Lett. 11: 034008.

Citation

Finer M & Novoa S (2016) New Deforestation Hotspot in Madre de Dios, 2016. MAAP: 28.